货号:A656002
同义名:
雷帕霉素
/ Sirolimus; AY-22989
Rapamycin是一种特异性 mTOR 抑制剂,IC50 为 0.1 nM。通过与 FKBP12 结合抑制 mTORC1,Rapamycin 还可作为自噬激活剂和免疫抑制剂,广泛应用于抗癌、移植排斥反应和自噬相关疾病的研究。


| 规格 | 价格 | 会员价 | 库存 | 数量 | |||
|---|---|---|---|---|---|---|---|
| {[ item.pr_size ]} |
{[ getRatePriceInt(item.pr_rmb, 1,1) ]} {[ getRatePriceInt(item.pr_rmb_sale, 1,1) ]} {[ suihuo_tips(item.pr_tag_price, item.pr_am) ]} |
{[ getRatePriceInt(item.pr_rmb, 1,1) ]} {[ getRatePriceInt(item.pr_rmb,item.pr_rate,1) ]} {[ suihuo_tips(item.pr_tag_price, item.pr_am) ]} |
{[ getRatePriceInt(item.pr_rmb, 1,1) ]}{[ suihuo_tips(item.pr_tag_price, item.pr_am) ]} | {[ getRatePrice(item.pr_rmb_sale, 1,1,item.mem_isinteger) ]} {[ getRatePrice(item.pr_rmb,item.pr_rate,item.mem_rate,item.mem_isinteger) ]} {[ getRatePrice(item.pr_rmb,1,item.mem_rate,item.mem_isinteger) ]} | 现货 | 1周 咨询 | - + |
快速发货 顺丰冷链运输,1-2 天到达
品质保证
技术支持
免费溶解

| 产品名称 | mTOR ↓ ↑ | mTORC1 ↓ ↑ | mTORC2 ↓ ↑ | 其他靶点 | 纯度 | ||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| AZD-8055 |
++++
mTOR (truncated), IC50: 0.13 nM mTOR (full length), IC50: 0.8 nM |
99%+ | |||||||||||||||||
| Gedatolisib |
++++
mTOR, IC50: 1.6 nM |
99% | |||||||||||||||||
| GSK1059615 |
++
mTOR, IC50: 12 nM |
98% | |||||||||||||||||
| Vistusertib |
+++
mTOR, IC50: 2.8 nM |
99%+ | |||||||||||||||||
| Torin 1 |
+++
mTOR, IC50: 4.32 nM |
+++
mTORC1, IC50: 2 nM |
++
mTORC2, IC50: 10 nM |
DNA-PK | 99%+ | ||||||||||||||
| Dactolisib |
+++
mTOR (p70S6K), IC50: 6 nM |
98+% | |||||||||||||||||
| PI-103 |
+
mTOR, IC50: 30 nM |
99%+ | |||||||||||||||||
| WAY-600 |
++
mTOR, IC50: 9 nM |
99% | |||||||||||||||||
| Voxtalisib |
+
mTOR, IC50: 157 nM |
99%+ | |||||||||||||||||
| PF-04691502 |
++
mTOR, Ki: 16 nM |
98+% | |||||||||||||||||
| Onatasertib |
++
mTOR, IC50: 16 nM |
DNA-PK | 99%+ | ||||||||||||||||
| Chrysophanol | ✔ | EGFR | 98% | ||||||||||||||||
| Samotolisib | ✔ | DNA-PK | 99%+ | ||||||||||||||||
| Torkinib |
+++
mTOR, IC50: 8 nM |
DNA-PK,PDGFR | 99%+ | ||||||||||||||||
| Everolimus | 99%+ | ||||||||||||||||||
| WYE-354 |
+++
mTOR, IC50: 5 nM |
98% | |||||||||||||||||
| Tacrolimus | ✔ | 98% | |||||||||||||||||
| PP121 |
++
mTOR, IC50: 13 nM |
PDGFR,VEGFR | 99%+ | ||||||||||||||||
| Torin 2 |
++++
mTOR, IC50: 0.25 nM |
DNA-PK | 99%+ | ||||||||||||||||
| Rapamycin |
++++
mTOR, IC50: ~0.1 nM |
98% | |||||||||||||||||
| GDC-0349 |
+++
mTOR, Ki: 3.8 nM |
98% | |||||||||||||||||
| XL388 |
++
mTOR, IC50: 9.9 nM |
+++
mTORC1, IC50: 8 nM |
+
mTORC2, IC50: 166 nM |
99%+ | |||||||||||||||
| WYE-687 |
+++
mTOR, IC50: 7 nM |
98% | |||||||||||||||||
| Apitolisib |
+
mTOR, Ki app: 17 nM |
98%+ | |||||||||||||||||
| WYE-132 |
++++
mTOR, IC50: 0.19 nM |
99%+ | |||||||||||||||||
| Sapanisertib |
++++
mTOR, Ki: 1.4 nM |
99%+ | |||||||||||||||||
| BGT226 maleate | ✔ | 99%+ | |||||||||||||||||
| ETP-46464 |
++++
mTOR, IC50: 0.6 nM |
DNA-PK | 98% | ||||||||||||||||
| PI3K-IN-1 |
+
mTOR, IC50: 157 nM |
98+% | |||||||||||||||||
| Zotarolimus |
+++
FKBP-12, IC50: 2.8 nM |
98% | |||||||||||||||||
| OSI-027 |
+++
mTOR, IC50: 4 nM |
+
mTORC1, IC50: 22 nM |
+
mTORC2, IC50: 65 nM |
99%+ | |||||||||||||||
| Ridaforolimus |
++++
mTOR, IC50: 0.2 nM |
99%+ | |||||||||||||||||
| Temsirolimus |
+
mTOR, IC50: 1.76 μM |
95% | |||||||||||||||||
| CZ415 |
++
mTOR, pIC50: 8.07 |
99%+ | |||||||||||||||||
| SF2523 |
+
mTOR, IC50: 280 nM |
DNA-PK | 99%+ | ||||||||||||||||
| KU-0063794 |
++
mTORC1, IC50: ~10 nM |
++
mTORC2, IC50: ~10 nM |
99%+ | ||||||||||||||||
| Omipalisib |
++++
mTORC1, Ki: 0.18 nM |
++++
mTORC2, Ki: 0.3 nM |
99%+ | ||||||||||||||||
| Palomid 529 | ✔ | 99%+ | |||||||||||||||||
| 1. 鼠标悬停在“+”上可以显示相关IC50的具体数值。"+"越多,抑制作用越强。2. "✔"表示该化合物对相应的亚型有抑制作用,但抑制强度暂时没有相关数据。 | |||||||||||||||||||
| 产品名称 | Autophagy ↓ ↑ | 其他靶点 | 纯度 | ||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| SBI-0206965 |
+++
ULK2, IC50: 711 nM ULK1, IC50: 108 nM |
95% | |||||||||||||||||
| Hydroxychloroquine sulfate | ✔ | 99% | |||||||||||||||||
| Valproic acid sodium | ✔ | HDAC | 97% | ||||||||||||||||
| PFK-015 |
++
PFKFB3, IC50: 207 nM |
99%+ | |||||||||||||||||
| MRT68921 HCl |
++++
ULK2, IC50: 1.1 nM ULK1, IC50: 2.9 nM |
99%+ | |||||||||||||||||
| ROC-325 | ✔ | 99%+ | |||||||||||||||||
| Autophinib |
+++
Autophagy, IC50: 40 nM |
99% | |||||||||||||||||
| Lys05 | ✔ | 99%+ | |||||||||||||||||
| 1. 鼠标悬停在“+”上可以显示相关IC50的具体数值。"+"越多,抑制作用越强。2. "✔"表示该化合物对相应的亚型有抑制作用,但抑制强度暂时没有相关数据。 | |||||||||||||||||||
| 靶点 |
|
| 描述 | Rapamycin inhibits endogenous mTOR activity in HEK293 cells with IC50 of ~0.1 nM, more potently than iRap and AP21967 with IC50 of ~5 nM and ~10 nM, respectively. In Saccharomyces cerevisiae, Rapamycin treatment induces a severe G1/S cell cycle arrest and inhibition of translation initiation to levels below 20% of control. Rapamycin significantly inhibits the cell viability of T98G and U87-MG in a dose-dependent manner with IC50 of 2 nM and 1 μM, respectively, while displaying little activity against U373-MG cells with IC50 of >25 μM despite the similar extent of the inhibition of mTOR signaling. Rapamycin (100 nM) induces G1 arrest and autophagy but not apoptosis in Rapamycin-sensitive U87-MG and T98G cells by inhibiting the function of mTOR. |
| Concentration | Treated Time | Description | References | |
| MEFs | 5 µMol | 3 hours | To induce autophagy and analyze LC3B expression. | Adv Sci (Weinh). 2022 Jan;9(3):e2102568. |
| Yeast cells | 1 µM | 5 min | Disruption of mismatch repair | Nucleic Acids Res. 2021 Sep 20;49(16):9327-9341. |
| CD25+ cells | 100 ng/ml | days 4, 7, 11 and 18 | To facilitate ex vivo CD25+ cell expansion. | Gut. 2023 Jan;72(1):49-53. |
| Yeast cells | 1 ng/ul | 1 hour | Induce CICI formation | Nat Commun. 2022 Feb 9;13(1):757. |
| Huh7 cells | 20 nM | 24 hours | To monitor autophagic flux as a positive control and its effects. | Redox Biol. 2021 Oct;46:102081. |
| Yeast cells | 200 nM | 1.5 hours | To study the upregulation of RPACs and the effects on proteasome assembly under TORC1 inhibition. | Nat Cell Biol. 2022 Jul;24(7):1077-1087. |
| CHO-Gal4 cells | 0 or 50 nM | 12 hours | TF clustering directly enhances transcriptional activation and amplifies target gene expression. | Nat Commun. 2022 May 13;13(1):2663. |
| Primary articular chondrocytes | 0, 1, 5, 10, 20 nM | 2 days | To assess cell viability. | J Nanobiotechnology. 2023 Oct 4;21(1):361. |
| Nalm6 and 697 cells | 10-20 µM | 2 days | Combination treatment showed synergistic cytotoxic effects. | Leukemia. 2021 May;35(5):1267-1278. |
| Drosophila S2 cells | 100 nM | 2 hours | To examine translational activity at the whole-transcriptome level by ribosome profiling. | Sci Adv. 2020 Aug 12;6(33):eabb8771. |
| Raw264.7 cells | 10 µM | 2 hours | To evaluate the role of mTOR in BSNP-induced trained immunity, assessing inflammatory cytokine expression and phagocytosis. | Theranostics. 2022 Jan 1;12(2):675-688. |
| DLD1 cells | 100 ng/ml | 2 hours | To drive chemically induced dimerisation of TEV, and, as a result, PKCε cleavage | Nat Commun. 2020 Mar 13;11(1):1396. |
| F98 astrocytoma cells | 100 nM | 24 hours | To investigate the cytoprotective effect of rapamycin against GO-induced apoptosis. | J Nanobiotechnology. 2020 Mar 18;18(1):52. |
| MDMs | 10 nM | 24 hours | To investigate the effect of metabolic reprogramming on cytokine production. | Nat Commun. 2020 May 8;11(1):2282. |
| HL60 and U937 cells | 500 mg/mL | 24 hours | To evaluate the cytokine profiles and elimination capacity of CAR-T cells; rapamycin-pretreated exhibited lower AML residues. | Clin Cancer Res. 2021 Nov 1;27(21):6026-6038. |
| MLE-12 cells | 10 μg/ml | 24 hours | To explore the effect of autophagy activation with rapamycin treatment on SWCNTs-induced senescence and FMT in MLE-12 cells. | J Nanobiotechnology. 2023 Feb 28;21(1):69. |
| Human Renal Proximal Tubular Cells | 100 nM | 24 hours | To investigate the effect of rapamycin on GLUT2 expression under hyperglycemic conditions. | Nat Commun. 2022 Apr 4;13(1):1783. |
| RPE cells | 100 nM | 24 hours | To determine optimal drug concentration and its time-dependent response; no significant difference was observed comparing treatments to no treatment controls. | Redox Biol. 2020 Jul;34:101552. |
| Myotubes cells | 10 nM | 24 hours | To investigate mTORC1 activity suppression and measure autophagic flux. | Nat Commun. 2020 Sep 9;11(1):4510. |
| Endothelial cells and smooth muscle cells | 0.3 to 3000 ng/mL | 24 hours, 48 hours, 72 hours | To compare anti-proliferative effects of SRM-NPs and PTX-NPs; SRM proved more effective under hypoxia. | Bioact Mater. 2020 Oct 1;6(3):880-889. |
| CD8+ T cells | 20 nM | 36 hours | Transient mTOR inhibition can restore ACD in aged CD8+ T cells, suggesting a potential therapeutic strategy to reinvigorate immune responses in elderly individuals. | Nat Commun. 2021 May 11;12(1):2715. |
| COS-7 cells | 100 nM | 50 min | The purpose was to evaluate the effect of rapamycin on mitochondrial deformation, resulting in a ~60% decrease in TMRE signal. | Nat Commun. 2022 Jul 29;13(1):4413. |
| HeLa | 1 µM | 80 min | To study the effects of rapamycin on immunostaining in HeLa cells expressing a specific construct. | Cell Res. 2022 Dec;32(12):1086-1104. |
| SCC-25 cells | 200 nM | up to 18 hours | To induce autophagy and assess its effect on FN1 degradation, showing that increased autophagic activity correlates with reduced FN1 levels. | Int J Oral Sci. 2020 Dec 14;12(1):34. |
| C2C12 cells | 100 nM | In the presence of rapamycin, S6 phosphorylation was drastically reduced, both in the presence or absence of TubA. | Nat Commun. 2022 Nov 19;13(1):7108. | |
| MSCs | 50 nM | Improved colony-forming capability, proliferation, and osteogenic differentiation of TNFα−/− MSCs | Bone Res. 2021 Jan 1;8(1):44. | |
| HEK293T | 333 nM | Disruption of FUS condensates and prevention of new condensate formation. | Nat Commun. 2021 Mar 22;12(1):1809. | |
| Tsc2-deficient cells | 20 nM | Had no additional effect on the proliferation of Tsc2-deficient cells, but decreased the expression of Tfeb by about 2-fold. | Nat Commun. 2021 Jul 12;12(1):4245. | |
| Intestinal Intraepithelial Lymphocytes (IEL) | 20 nM | To assess the impact of Rapamycin on IEL growth and granzyme B expression. | Nat Commun. 2021 Jul 13;12(1):4290. | |
| MCF10AecoR cells | 1 µM | 4 hours | To study the effect of mTOR inhibitors on BRAF T401 phosphorylation, results showed rapamycin partially suppressed pT401 levels. | Cell Commun Signal. 2024 Sep 2;22(1):428. |
| Administration | Dosage | Frequency | Description | References | ||
| Mice | OTULIN-deficient mouse model | Intraperitoneal injection | 1 mg/kg | Twice weekly from postnatal day 8 until 8 weeks of age | To reduce liver pathology caused by OTULIN deficiency; rapamycin treatment reduced histological abnormalities and fibrosis. | Cell Death Differ. 2020 May;27(5):1457-1474 |
| C57BL/6 mice | DMM surgery model for OA | Intra-articular injection | 10 µM | Once weekly for 8 weeks | To evaluate the therapeutic effect on OA and reduce cartilage destruction. | J Nanobiotechnology. 2023 Oct 4;21(1):361. |
| Mice | Pik3c2b KO Mouse Model | Intraperitoneal injection | 10 mg/kg | Single treatment before sacrifice | To normalize mTORC1 activity in KO adult brains. | Brain. 2022 Jul 29;145(7):2313-2331 |
| Mice | Telomerase-deficient mice | Intraperitoneal injection | 2 mg/kg | 2 h post-injection | To test the inhibition of mTORC1 and understand its role in the survival of telomerase-deficient mice. | Nat Commun. 2020 Mar 3;11(1):1168 |
| BALB/c nude mice | HepG2 cells or MHCC97H cells transplantation | Intraperitoneal injection | 3 mg/kg | Every other day starting at day 4 | Rescues increased cell size and mTORC1 activation induced by TET2 deficiency. | Cell Discov. 2023 Aug 8;9(1):84 |
| NRG mice | Patient-derived xenografts (PDX) | Intraperitoneal injection | 4 mg/kg | 5 days/week | Combination treatment significantly prolonged survival of mice. | Leukemia. 2021 May;35(5):1267-1278. |
| Mice | DTG mice | Intraperitoneal injection | 4 mg/kg | Daily for 5 consecutive days | Improved symptoms for human patients with extramammary PD. | Cell Res. 2020 Oct;30(10):854-872 |
| SCID/NOD mice | Tumor-bearing mice | Intraperitoneal injection | 6 mg/kg | Daily | Combination treatment to enhance efficacy against tumors. | Mol Cancer. 2022 Aug 30;21(1):171 |
| Mice | Pancreatic growth model | Intraperitoneal injection | 0.2 mg/(100 g body weight) | Daily injections for 7 days | To study the role of the mTOR signaling pathway in pancreatic growth, results showed that rapamycin inhibited camostat-induced pancreatic growth | J Physiol. 2006 Jun 15;573(Pt 3):775-86 |
| Mice | Col6a1−⁄− mice | Intraperitoneal injection | 2 mg/kg body weight | Every 24 h for 14 days | Investigated the effects of rapamycin on col6a1??? mice, finding that rapamycin treatment reduced ER stress, increased autophagy molecular signatures, and improved platelet counts. | Autophagy. 2023 Mar;19(3):984-999 |
| Mice | Diabetic embryopathy model | Intraperitoneal injection | 2 mg/kg | Daily from E5.5 to E8.5 or E10.5 | Investigate the preventive effect of rapamycin on diabetes-induced neural tube defects | Sci Adv. 2021 Jun 30;7(27):eabf5089 |
| Dose | Rat: 1 mg/kg , 3 mg/kg[1] (i.p.), 40 mg/kg[2] (i.p.) Mice: 0.03 mg/kg - 0.7 mg/kg[3] (i.n.); 0.08 mg/kg[3] (i.p.), 40 mg/kg[4] (i.p.) |
| Administration | i.p., i.n. |
| 计算器 | ||||
| 存储液制备 | ![]() |
1mg | 5mg | 10mg |
|
1 mM 5 mM 10 mM |
1.09mL 0.22mL 0.11mL |
5.47mL 1.09mL 0.55mL |
10.94mL 2.19mL 1.09mL |
|
| CAS号 | 53123-88-9 |
| 分子式 | C51H79NO13 |
| 分子量 | 914.17 |
| SMILES Code | O=C(C([C@](O[C@]1([H])C[C@@H](/C(C)=C/C=C/C=C/[C@H]2C)OC)([C@@H](CC1)C)O)=O)N(CCCC3)[C@]3([H])C(O[C@](CC([C@@H](/C=C([C@H]([C@H](C([C@H](C)C2)=O)OC)O)\C)C)=O)([H])[C@H](C)C[C@H](CC[C@H]4O)C[C@H]4OC)=O |
| MDL No. | MFCD00867594 |
| 别名 | 雷帕霉素 ;Sirolimus; AY-22989; D00753; C07909; SILA 9268A; SLM; RPM; RAP; RAPA; Wy 090217; NSC 226080; NSC-2260804; Rapamune |
| 运输 | 蓝冰 |
| InChI Key | QFJCIRLUMZQUOT-HPLJOQBZSA-N |
| Pubchem ID | 5284616 |
| 存储条件 |
In solvent -20°C: 3-6个月 -80°C: 12个月 Pure form Sealed in dry, store in freezer, under -20°C |
| 溶解方案 |
DMSO: 120 mg/mL(131.27 mM),配合低频超声助溶,注意:DMSO长时间开封后,会吸水并导致溶解能力下降,请避免使用长期开封的DMSO 无水乙醇: 50 mg/mL(54.69 mM),配合低频超声助溶,注意:无水乙醇开封后,易挥发,也会吸收空气中的水分,导致溶解能力下降,请避免使用开封较久的乙醇 以下溶解方案都请先按照体外实验的方式配制澄清的储备液,再依次添加助溶剂: ——为保证实验结果的可靠性,澄清的储备液可以根据储存条件,适当保存;体内实验的工作液,建议现用现配,当天使用; 以下溶剂前显示的百分比是指该溶剂在终溶液中的体积占比;如在配制过程中出现沉淀、析出现象,可以通过加热和/或超声的方式助溶
|
沪公网安备 31011702889066号
沪ICP备2024050318号-1