货号:A160216
同义名:
尼达尼布乙磺酸盐
/ BIBF 1120 esylate; BIBF 1120 (esylate)
Nintedanib esylate (BIBF 1120 esylate) (BIBF 1120 esylate) 是一种有效的三重血管激酶抑制剂,对VEGFR1/2/3、FGFR1/2/3和PDGFRα/β的IC50值分别为34 nM/13 nM/13 nM、69 nM/37 nM/108 nM和59 nM/65 nM。


| 规格 | 价格 | 会员价 | 库存 | 数量 | |||
|---|---|---|---|---|---|---|---|
| {[ item.pr_size ]} |
{[ getRatePriceInt(item.pr_rmb, 1,1) ]} {[ getRatePriceInt(item.pr_rmb_sale, 1,1) ]} {[ suihuo_tips(item.pr_tag_price, item.pr_am) ]} |
{[ getRatePriceInt(item.pr_rmb, 1,1) ]} {[ getRatePriceInt(item.pr_rmb,item.pr_rate,1) ]} {[ suihuo_tips(item.pr_tag_price, item.pr_am) ]} |
{[ getRatePriceInt(item.pr_rmb, 1,1) ]}{[ suihuo_tips(item.pr_tag_price, item.pr_am) ]} | {[ getRatePrice(item.pr_rmb_sale, 1,1,item.mem_isinteger) ]} {[ getRatePrice(item.pr_rmb,item.pr_rate,item.mem_rate,item.mem_isinteger) ]} {[ getRatePrice(item.pr_rmb,1,item.mem_rate,item.mem_isinteger) ]} | 现货 | 1周 咨询 | - + |
快速发货 顺丰冷链运输,1-2 天到达
品质保证
技术支持
免费溶解

| 产品名称 | FGFR ↓ ↑ | FGFR1 ↓ ↑ | FGFR2 ↓ ↑ | FGFR3 ↓ ↑ | FGFR4 ↓ ↑ | 其他靶点 | 纯度 | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Tyrphostin AG1296 |
+
FGFR (Swiss 3T3), IC50: 12.3 μM |
PDGFR | 99%+ | ||||||||||||||||
| Pazopanib |
+
FGFR, IC50: 140 nM |
99% | |||||||||||||||||
| Erdafitinib | ✔ | RET | 99%+ | ||||||||||||||||
| Gambogenic acid | ✔ | 98+% | |||||||||||||||||
| Sulfatinib |
+++
FGFR1, IC50: 15 nM |
99+% | |||||||||||||||||
| Nintedanib esylate |
+
FGFR1, IC50: 69 nM |
++
FGFR2, IC50: 37 nM |
+
FGFR3, IC50: 108 nM |
98% | |||||||||||||||
| Zoligratinib |
+++
FGFR1, IC50: 9.3 nM |
+++
FGFR2, IC50: 7.6 nM |
++
FGFR3, IC50: 22 nM |
+
FGFR4, IC50: 290 nM |
99%+ | ||||||||||||||
| MK-2461 |
+
FGFR1, IC50: 65 nM |
++
FGFR2, IC50: 39 nM |
++
FGFR3, IC50: 50 nM |
98%+ | |||||||||||||||
| SU 5402 |
++
FGFR1, IC50: 30 nM |
98% | |||||||||||||||||
| Brivanib |
+
FGFR1, IC50: 148 nM |
99%+ | |||||||||||||||||
| Lucitanib |
++
FGFR1, IC50: 17.5 nM |
+
FGFR2, IC50: 82.5 nM |
99%+ | ||||||||||||||||
| Ponatinib |
++++
FGFR1, IC50: 2.2 nM |
98% | |||||||||||||||||
| PD-166866 |
+
FGFR1, IC50: 52.4 nM |
99% | |||||||||||||||||
| Narazaciclib |
++
FGFR1, IC50: 26 nM |
RET | 99%+ | ||||||||||||||||
| Lactate |
+++
FGFR1, IC50: 8 nM |
+++
FGFR3, IC50: 9 nM |
c-Kit,FLT3 | 85% | |||||||||||||||
| Lenvatinib mesylate |
++
FGFR1, IC50: 46 nM |
c-RET | 99% | ||||||||||||||||
| LY2874455 |
++++
FGFR1, IC50: 2.8 nM |
++++
FGFR2, IC50: 2.6 nM |
+++
FGFR3, IC50: 6.4 nM |
+++
FGFR4, IC50: 6 nM |
99%+ | ||||||||||||||
| FIIN-2 |
+++
FGFR1, IC50: 3.09 nM |
+++
FGFR2, IC50: 4.3 nM |
++
FGFR3, IC50: 27 nM |
++
FGFR4, IC50: 45.3 nM |
99% | ||||||||||||||
| FIIN-3 |
+++
FGFR1, IC50: 13.1 nM |
++
FGFR2, IC50: 21 nM |
++
FGFR3, IC50: 31.4 nM |
++
FGFR4, IC50: 35.3 nM |
98% | ||||||||||||||
| Infigratinib |
++++
FGFR1, IC50: 0.9 nM |
++++
FGFR2, IC50: 1.4 nM |
++++
FGFR3, IC50: 1.0 nM FGFR3 (K650E), IC50: 4.9 nM |
+
FGFR4, IC50: 60 nM |
99%+ | ||||||||||||||
| Danusertib |
++
FGFR1, IC50: 47 nM |
RET | 99%+ | ||||||||||||||||
| R1530 |
++
FGFR1, IC50: 28 nM |
98% | |||||||||||||||||
| ENMD-2076 |
+
FGFR1, IC50: 92.7 nM |
+
FGFR2, IC50: 70.8 nM |
RET,FLT3 | 98% | |||||||||||||||
| Dovitinib |
+++
FGFR1, IC50: 8 nM |
+++
FGFR3, IC50: 9 nM |
c-Kit,FLT3 | 99%+ | |||||||||||||||
| Sorafenib |
+
FGFR1, IC50: 580 nM |
99% | |||||||||||||||||
| SSR128129E |
+
FGFR1, IC50: 1.9 μM |
99%+ | |||||||||||||||||
| AZD-4547 |
++++
FGFR1, IC50: 0.2 nM |
++++
FGFR2, IC50: 2.5 nM |
++++
FGFR3, IC50: 1.8 nM |
98% | |||||||||||||||
| Lenvatinib |
++
FGFR1, IC50: 46 nM |
RET | 98% | ||||||||||||||||
| PD173074 |
++
FGFR1, IC50: ~25 nM |
99%+ | |||||||||||||||||
| S49076 |
++
FGFR1, IC50: 18 nM |
+++
FGFR2, IC50: 17 nM |
+++
FGFR3, IC50: 15 nM |
98% | |||||||||||||||
| Futibatinib |
++++
FGFR1, IC50: 1.8 nM |
++++
FGFR2, IC50: 1.4 nM |
++++
FGFR3, IC50: 1.6 nM |
+++
FGFR4, IC50: 3.7 nM |
99%+ | ||||||||||||||
| Ferulic Acid |
+
FGFR1, IC50: 3.78 μM |
+
FGFR2, IC50: 12.5 μM |
98% | ||||||||||||||||
| Nintedanib |
+
FGFR1, IC50: 69 nM |
++
FGFR2, IC50: 37 nM |
+
FGFR3, IC50: 108 nM |
+
FGFR4, IC50: 610 nM |
99+% | ||||||||||||||
| ASP5878 |
++++
FGFR1, IC50: 0.47 nM |
++++
FGFR2, IC50: 0.6 nM |
++++
FGFR3, IC50: 0.74 nM |
+++
FGFR4, IC50: 3.5 nM |
99% | ||||||||||||||
| PRN1371 |
++++
FGFR1, IC50: 0.6 nM |
++++
FGFR2, IC50: 1.3 nM |
+++
FGFR3, IC50: 4.1 nM |
++
FGFR4, IC50: 19.3 nM |
99% | ||||||||||||||
| Derazantinib |
+++
FGFR1, IC50: 4.5 nM |
++++
FGFR2, IC50: 1.8 nM |
+++
FGFR3, IC50: 4.5 nM |
++
FGFR4, IC50: 34 nM |
RET | 99%+ | |||||||||||||
| ODM-203 |
+++
FGFR1, IC50: 11 nM |
+++
FGFR2, IC50: 16 nM |
+++
FGFR3, IC50: 6 nM |
++
FGFR4, IC50: 35 nM |
99%+ | ||||||||||||||
| Pemigatinib |
++++
FGFR1, IC50: 0.4 nM |
++++
FGFR2, IC50: 0.5 nM |
++++
FGFR3, IC50: 1.2 nM |
++
FGFR4, IC50: 30 nM |
99%+ | ||||||||||||||
| SKLB 610 | ✔ | PDGFR | 99%+ | ||||||||||||||||
| Alofanib | ✔ | 99%+ | |||||||||||||||||
| Lirafugratinib | ✔ | 99% | |||||||||||||||||
| Masitinib mesylate | ✔ | FAK | 99%+ | ||||||||||||||||
| BLU9931 |
+
FGFR3, IC50: 150 nM |
+++
FGFR4, IC50: 3 nM |
99%+ | ||||||||||||||||
| BO-264 | ✔ | 99%+ | |||||||||||||||||
| Fisogatinib |
+++
FGFR4, IC50: 5 nM |
99%+ | |||||||||||||||||
| H3B-6527 |
++++
FGFR4, IC50: <1.2 nM |
99%+ | |||||||||||||||||
| Roblitinib |
++++
FGFR4, IC50: 1.9 nM |
99%+ | |||||||||||||||||
| 1. 鼠标悬停在“+”上可以显示相关IC50的具体数值。"+"越多,抑制作用越强。2. "✔"表示该化合物对相应的亚型有抑制作用,但抑制强度暂时没有相关数据。 | |||||||||||||||||||
| 产品名称 | PDGFR ↓ ↑ | PDGFRα ↓ ↑ | PDGFRβ ↓ ↑ | 其他靶点 | 纯度 | ||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Tyrphostin A9 |
+
PDGFR, IC50: 0.5 μM |
EGFR | 98% | ||||||||||||||||
| Tyrphostin AG1296 | 99%+ | ||||||||||||||||||
| Motesanib Diphosphate |
++
PDGFR, IC50: 84 nM |
97% | |||||||||||||||||
| Pazopanib |
++
PDGFR, IC50: 84 nM |
99% | |||||||||||||||||
| Imatinib |
+
PDGFR, IC50: 100 nM |
c-Kit | 98% | ||||||||||||||||
| Imatinib Mesylate |
+
PDGFR, IC50: 100 nM |
c-Kit | 99% | ||||||||||||||||
| Sennoside B | ✔ | 99%+ | |||||||||||||||||
| PP121 |
++++
PDGFR, IC50: 2 nM |
mTOR,VEGFR | 99%+ | ||||||||||||||||
| Crenolanib |
++++
PDGFRα, Kd: 2.1 nM |
++++
PDGFRβ, Kd: 3.2 nM |
99%+ | ||||||||||||||||
| Masitinib |
+
PDGFRα, IC50: 540 nM |
+
PDGFRβ, IC50: 800 nM |
99%+ | ||||||||||||||||
| Ki8751 |
++
PDGFRα, IC50: 67 nM |
c-Kit | 99% | ||||||||||||||||
| Tivozanib |
++
PDGFRα, IC50: 40 nM |
++
PDGFRβ, IC50: 49 nM |
99%+ | ||||||||||||||||
| Ponatinib |
++++
PDGFRα, IC50: 1.1 nM |
98% | |||||||||||||||||
| Amuvatinib |
++
PDGFRα (V561D), IC50: 40 nM |
99%+ | |||||||||||||||||
| Axitinib |
+++
PDGFRα, IC50: 5.0 nM |
++++
PDGFRβ, IC50: 1.6 nM |
98% | ||||||||||||||||
| CP-673451 |
+++
PDGFRα, IC50: 10 nM |
++++
PDGFRβ, IC50: 1 nM |
99%+ | ||||||||||||||||
| Telatinib |
+++
PDGFRα, IC50: 15 nM |
c-Kit | 99%+ | ||||||||||||||||
| Nintedanib |
++
PDGFRα, IC50: 59 nM |
++
PDGFRβ, IC50: 65 nM |
99+% | ||||||||||||||||
| Avapritinib |
++++
PDGFRα (D842V), IC50: 0.5 nM |
99%+ | |||||||||||||||||
| MK-2461 |
+++
PDGFRβ, IC50: 22 nM |
98%+ | |||||||||||||||||
| Lactate |
+++
PDGFRβ, IC50: 27 nM |
c-Kit,FLT3 | 85% | ||||||||||||||||
| Linifanib |
++
PDGFRβ, IC50: 66 nM |
99%+ | |||||||||||||||||
| AZD2932 |
+++
PDGFRβ, IC50: 4 nM |
c-Kit | 99% | ||||||||||||||||
| Dovitinib |
+++
PDGFRβ, IC50: 27 nM |
c-Kit,FLT3 | 99%+ | ||||||||||||||||
| Sorafenib |
++
mPDGFRβ, IC50: 57 nM PDGFRβ, IC50: 57 nM |
99% | |||||||||||||||||
| Sunitinib |
++++
PDGFRβ , IC50: 2 nM |
FLT3 | 98% | ||||||||||||||||
| Orantinib |
+++
PDGFRβ, Ki: 8 nM |
99%+ | |||||||||||||||||
| 1. 鼠标悬停在“+”上可以显示相关IC50的具体数值。"+"越多,抑制作用越强。2. "✔"表示该化合物对相应的亚型有抑制作用,但抑制强度暂时没有相关数据。 | |||||||||||||||||||
| 产品名称 | VEGFR1 ↓ ↑ | VEGFR2 ↓ ↑ | VEGFR3 ↓ ↑ | 其他靶点 | 纯度 | ||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Motesanib Diphosphate |
++++
VEGFR1, IC50: 2 nM |
++++
VEGFR2/Flk1, IC50: 3 nM VEGFR2, IC50: 3 nM |
+++
VEGFR3, IC50: 6 nM |
RET,PDGFR | 97% | ||||||||||||||
| Tivozanib |
++
VEGFR1, IC50: 30 nM |
+++
VEGFR2, IC50: 6.5 nM |
++
VEGFR3, IC50: 15 nM |
99%+ | |||||||||||||||
| Brivanib |
+
VEGFR1, IC50: 380 nM |
++
Flk1, IC50: 25 nM VEGFR2, IC50: 25 nM |
99%+ | ||||||||||||||||
| Regorafenib |
+++
VEGFR1, IC50: 13 nM |
+++
VEGFR2, IC50: 4.2 nM |
+
VEGFR3, IC50: 46 nM |
RET | 98% | ||||||||||||||
| Pazopanib |
+++
VEGFR1, IC50: 10 nM |
++
VEGFR2, IC50: 30 nM |
+
VEGFR3, IC50: 47 nM |
c-Kit,PDGFR,FGFR | 99% | ||||||||||||||
| Sitravatinib |
+++
VEGFR1 (FLT1), IC50: 6 nM |
+++
VEGFR2 (KDR), IC50: 5 nM |
++++
VEGFR3 (FLT4), IC50: 2 nM |
99%+ | |||||||||||||||
| Foretinib |
+++
VEGFR1/FLT1, IC50: 6.8 nM |
++++
KDR, IC50: 0.86 nM |
++++
VEGFR3/FLT4, IC50: 2.8 nM |
Tie-2 | 99%+ | ||||||||||||||
| MGCD-265 analog |
++++
VEGFR1, IC50: 3 nM |
++++
VEGFR2, IC50: 3 nM |
++++
VEGFR3, IC50: 4 nM |
Tie-2 | 99%+ | ||||||||||||||
| Lactate |
+++
VEGFR1/FLT1, IC50: 10 nM |
+++
VEGFR2/Flk1, IC50: 13 nM |
+++
VEGFR3/FLT4, IC50: 8 nM |
c-Kit,FLT3 | 85% | ||||||||||||||
| AEE788 |
+
FLT1, IC50: 59 nM |
+
KDR, IC50: 77 nM |
EGFR | 98+% | |||||||||||||||
| Linifanib |
++++
VEGFR1/FLT1, IC50: 3 nM |
++++
VEGFR2/KDR, IC50: 4 nM |
+
VEGFR3/FLT4, IC50: 190 nM |
FLT3 | 99%+ | ||||||||||||||
| Vatalanib 2HCl |
+
VEGFR1/FLT1, IC50: 77 nM |
++
VEGFR2/Flk1, IC50: 270 nM VEGFR2/KDR, IC50: 37 nM |
+
VEGFR3/FLT4, IC50: 660 nM |
c-Kit,c-Fms/CSF1R | 99%+ | ||||||||||||||
| Axitinib |
++++
VEGFR1/FLT1, IC50: 0.1 nM |
++++
VEGFR2/Flk1, IC50: 0.18 nM VEGFR2/KDR, IC50: 0.2 nM |
98% | ||||||||||||||||
| Dovitinib |
+++
VEGFR1/FLT1, IC50: 10 nM |
+++
VEGFR2/Flk1, IC50: 13 nM |
+++
VEGFR3/FLT4, IC50: 8 nM |
c-Kit,FLT3 | 99%+ | ||||||||||||||
| ZM 306416 |
+
VEGFR1, IC50: 0.33 μM |
Src | 99%+ | ||||||||||||||||
| KRN-633 |
+
VEGFR1, IC50: 170 nM |
+
VEGFR2, IC50: 160 nM |
+
VEGFR3, IC50: 125 nM |
BTK,c-Kit | 98% | ||||||||||||||
| OSI-930 |
+++
FLT1, IC50: 8 nM |
+++
KDR, IC50: 9 nM |
99%+ | ||||||||||||||||
| Lenvatinib |
++
VEGFR1/FLT1, IC50: 22 nM |
++++
VEGFR2/KDR, IC50: 4.0 nM |
+++
VEGFR3/FLT4, IC50: 5.2 nM |
98% | |||||||||||||||
| NVP-BAW2881 |
+
hVEGFR1, IC50: 820 nM |
+++
hVEGFR2, IC50: 9 nM mVEGF2, IC50: 165 nM |
+
hVEGFR3, IC50: 420 nM |
99% | |||||||||||||||
| Cediranib |
+++
VEGFR1/FLT1, IC50: 5 nM |
++++
VEGFR2/KDR, IC50: 0.5 nM |
c-Kit | 99%+ | |||||||||||||||
| Nintedanib |
++
VEGFR1, IC50: 34 nM |
+++
VEGFR2, IC50: 13 nM |
+++
VEGFR3, IC50: 13 nM |
FLT3 | 99+% | ||||||||||||||
| BMS-794833 |
++
VEGFR2, IC50: 15 nM |
99%+ | |||||||||||||||||
| SKLB1002 |
++
VEGFR2, IC50: 32 nM |
99% | |||||||||||||||||
| Cabozantinib S-malate |
++++
VEGFR2/KDR, IC50: 0.035 nM |
99+% | |||||||||||||||||
| Ki8751 |
++++
VEGFR2, IC50: 0.9 nM |
c-Kit | 99% | ||||||||||||||||
| SU 5402 |
++
VEGFR2, IC50: 20 nM |
98% | |||||||||||||||||
| Apatinib mesylate |
++++
VEGFR2, IC50: 1 nM |
RET | 98+% | ||||||||||||||||
| Ponatinib |
++++
VEGFR2, IC50: 1.5 nM |
98% | |||||||||||||||||
| LY2874455 |
+++
VEGFR2, IC50: 7 nM |
99%+ | |||||||||||||||||
| ZM323881 HCl |
++++
VEGFR2, IC50: <2 nM |
98% | |||||||||||||||||
| AZD2932 |
+++
VEGFR-2, IC50: 8 nM |
c-Kit | 99% | ||||||||||||||||
| Cabozantinib |
++++
VEGFR2/KDR, IC50: 0.035 nM |
98% | |||||||||||||||||
| Sorafenib |
++
VEGFR2/Flk1, IC50: 90 nM VEGFR2, IC50: 90 nM |
99% | |||||||||||||||||
| CYC-116 |
++
VEGFR2, Ki: 44 nM |
FLT3 | 99%+ | ||||||||||||||||
| Golvatinib |
++
VEGFR2, IC50: 16 nM |
99%+ | |||||||||||||||||
| Sunitinib |
+
VEGFR2 , IC50: 80 nM |
FLT3 | 98% | ||||||||||||||||
| RAF265 |
++
VEGFR2, EC50: 30 nM |
99%+ | |||||||||||||||||
| PD173074 | 99%+ | ||||||||||||||||||
| BFH772 |
++++
VEGFR2, IC50: 3 nM |
98% | |||||||||||||||||
| Semaxinib |
+
VEGFR2/Flk1, IC50: 1.23 μM |
98% | |||||||||||||||||
| Vandetanib |
++
VEGFR2, IC50: 40 nM |
+
VEGFR3, IC50: 110 nM |
EGFR | 99% | |||||||||||||||
| SAR131675 |
++
VEGFR3, IC50: 23 nM |
99%+ | |||||||||||||||||
| ENMD-2076 |
+
VEGFR2/KDR, IC50: 58.2 nM |
++
VEGFR3/FLT4, IC50: 15.9 nM |
RET,FLT3 | 98% | |||||||||||||||
| Telatinib |
+++
VEGFR2, IC50: 6 nM |
++++
VEGFR3, IC50: 4 nM |
c-Kit | 99%+ | |||||||||||||||
| 1. 鼠标悬停在“+”上可以显示相关IC50的具体数值。"+"越多,抑制作用越强。2. "✔"表示该化合物对相应的亚型有抑制作用,但抑制强度暂时没有相关数据。 | |||||||||||||||||||
| 靶点 |
|
| 描述 | VEGF/VEGFR (vascular endothelial growth factor/vascular endothelial growth factor receptor) pathway plays a key role in tumor angiogenesis by promotion of vascular and lymphatic endothelial, as well as survival, and invasion, thus resulting in neovascularization, tumor growth and metastasis. In addition, blockade of additional proangiogenic receptor tyrosine kinases, including PDGFR and FGFR, may improve long-term clinical outcomes. BIBF 1120 Esylate is the esylate form of BIBF 1120. BIBF 1120 is a multi-RTKs inhibitor with IC50 values of 13nM, 13nM , 16nM , 26nM , 34nM , 37nM , 59nM , 65nM , 69nM , 108nM for VEGFR2, VEGFR3, LCK, FLT3, VEGFR1, FGFR2, PDGFRα, PDGFRβ, FGFR1, FGFR3 (measured by enzymatic assays), less potent to Src, Lyn and FGFR4 with IC50 values of 156nM , 195nM and 610nM, respectively. Treatment with BIBF 1120 resulted in cell proliferation and apoptosis (EC50<10nM) in HUVECs, HSMECs, as well as the downstream p-MAPK and p-AKT (0.1-1μM). Daily oral treatment with BIBF 1120 at dose of 100mg/kg for 5 days reduced vessel density by 76% in FaDu xenografts, as well as markedly reduced both Meca 32–positive and PDGFRβ-positive cells predominantly in the intratumoral compartment. Once daily oral administration of BIBF 1120 at dose of 50mg/kg and 100mg/kg inhibited tumor growth both in a model of human head and neck small cell carcinoma (FaDu cells) and in a human renal cancer model (Caki-1 cells). |
| Concentration | Treated Time | Description | References | |
| Neonatal rat cardiac fibroblasts (CFs) | 0.5 µM | 1 hour | NTB pretreatment prevented bFGF-induced ERK and AKT activation. | Pharmacol Res. 2021 Jul;169:105605. |
| Neonatal rat cardiac fibroblasts (CFs) | 0.5 µM | 1 hour | NTB pretreatment prevented TGF-β1-mediated SMAD3 phosphorylation but had no effect on TGF-β1-induced p38 activation. NTB exerts its anti-fibrotic effect via the canonical TGF-β1-SMAD3 pathway in a MAPK p38-independent manner. | Pharmacol Res. 2021 Jul;169:105605. |
| Human dermal fibroblasts (HDFs) | 0.5, 1, 2, 5, 10 µM | 1, 2, 3 days | To evaluate the cytotoxicity of Nintedanib on senescent and nonsenescent HDFs. Results showed that Nintedanib exhibited greater cytotoxicity in senescent HDFs, with a difference in cell viability of more than 40% at 5 or 10 μM. | Cell Death Dis. 2022 Sep 2;13(9):760. |
| Human ADPKD renal cyst epithelial cells | 1.5 µM | 12 days | To test the effect of Nintedanib on cyst growth, results showed Nintedanib significantly inhibited cyst growth | Cell Death Dis. 2021 Oct 14;12(10):947. |
| Primary human T cells | 10, 30, 100 nM | 15 minutes | Nintedanib blocked the activation of T cells (stimulated by anti-CD3/anti-CD28) through the inhibition of Lck-Y394 phosphorylation in a concentration-dependent manner. | Drug Des Devel Ther. 2021 Mar 8;15:997-1011. |
| Human neutrophils | 400 µMol | 2 hours | To investigate the effects of nintedanib on human neutrophil migration, results showed that nintedanib reduced neutrophil migration stimulated by MIP-2 or LPS. | Int J Mol Sci. 2021 Sep 13;22(18):9898. |
| HUVECs cells | ≤1 µM | 24 hours | No obvious cytotoxicity | Theranostics. 2022 Jan 1;12(2):747-766. |
| B16-F10 cells | 1 µM | 24 hours | Promoted STAT3 phosphorylation, upregulated PD-L1 and β2M expression | Theranostics. 2022 Jan 1;12(2):747-766. |
| 4T1 cells | 1 µM | 24 hours | Promoted STAT3 phosphorylation, upregulated PD-L1 and β2M expression | Theranostics. 2022 Jan 1;12(2):747-766. |
| LLC cells | 1 µM | 24 hours | Promoted STAT3 phosphorylation, upregulated PD-L1 and β2M expression | Theranostics. 2022 Jan 1;12(2):747-766. |
| MC38 cells | 1 µM | 24 hours | Promoted STAT3 phosphorylation, upregulated PD-L1 and β2M expression | Theranostics. 2022 Jan 1;12(2):747-766. |
| Neonatal rat cardiac fibroblasts (CFs) | 0.5 µM | 24 hours | NTB treatment inhibited TGF-β1-induced production of fibrogenic proteins (α-SMA and fibronectin) and prevented agonist-induced cell migration. | Pharmacol Res. 2021 Jul;169:105605. |
| BEAS-2B cells | 1 µM | 24 hours | Inhibited radiation-induced activation of PI3K/AKT and MAPK signaling pathways, reduced expression of inflammatory factors COX-2, TGF-β1, IL-1β, and IL-6 | Int J Biol Sci. 2024 Jun 11;20(9):3353-3371. |
| MLE-12 cells | 1 µM | 24 hours | Inhibited radiation-induced activation of PI3K/AKT and MAPK signaling pathways, reduced expression of inflammatory factors COX-2, TGF-β1, IL-1β, and IL-6 | Int J Biol Sci. 2024 Jun 11;20(9):3353-3371. |
| Human ADPKD renal cyst epithelial cells | 1.5 µM | 24 hours | To test the effect of Nintedanib on epithelial cell proliferation, results showed Nintedanib significantly inhibited cell proliferation | Cell Death Dis. 2021 Oct 14;12(10):947. |
| CD8+ T cells | 0.1–1000 nM | 24 hours | Nintedanib attenuated the release of anti-CD3- or anti-CD3/CD28-stimulated IL-2 in a concentration-dependent manner, with IC50 values ranging from 23 to 83 nmol/L. Due to low cell numbers, other cytokines were not evaluated. | Drug Des Devel Ther. 2021 Mar 8;15:997-1011. |
| CD4+ T cells | 0.1–1000 nM | 24 hours | Nintedanib attenuated the release of anti-CD3- or anti-CD3/CD28-stimulated IL-2 in a concentration-dependent manner, with IC50 values ranging from 23 to 83 nmol/L. Due to low cell numbers, other cytokines were not evaluated. | Drug Des Devel Ther. 2021 Mar 8;15:997-1011. |
| PAN-T cells | 0.1–1000 nM | 24 hours | Nintedanib blocked the release of anti-CD3- or anti-CD3/CD28-stimulated IFN-γ, IL-2, IL-4, IL-5, IL-10 and IL-13 in a concentration-dependent manner, with IC50 values ranging from 5 to 77 nmol/L. Anti-CD3-stimulated IL-12p70 was below the detection limit. | Drug Des Devel Ther. 2021 Mar 8;15:997-1011. |
| Peripheral blood mononuclear cells (PBMCs) | 0.1–1000 nM | 24 hours | Nintedanib blocked the release of anti-CD3- or anti-CD3/CD28-stimulated IFN-γ, IL-2, IL-4, IL-5, IL-10, IL-12p70 and IL-13 in a concentration-dependent manner, with IC50 values ranging from 17 to 59 nmol/L. | Drug Des Devel Ther. 2021 Mar 8;15:997-1011. |
| NIH-3T3 cells | 0.5 or 1 µM | 24, 48 or 72 hours | To assess the antifibrotic activity of Nintedanib on TGF-β1-stimulated NIH-3T3 cells, results showed that Nintedanib inhibited the proliferation and activation of NIH-3T3 cells. | Br J Cancer. 2021 Mar;124(5):914-924. |
| GIST-T1-T670I | 7.7 nM (GI50) | 3 days | Evaluate the antiproliferative effect of Nintedanib on GIST-T1-T670I cells, results showed Nintedanib was more effective than sunitinib. | Mol Oncol. 2022 Apr;16(8):1761-1774. |
| GIST-5R | 2.7 nM (GI50) | 3 days | Evaluate the antiproliferative effect of Nintedanib on GIST-5R cells, results showed Nintedanib was more effective than sunitinib. | Mol Oncol. 2022 Apr;16(8):1761-1774. |
| GIST-882 | 3.5 nM (GI50) | 3 days | Evaluate the antiproliferative effect of Nintedanib on GIST-882 cells, results showed Nintedanib had similar potency to sunitinib but was more potent than imatinib. | Mol Oncol. 2022 Apr;16(8):1761-1774. |
| GIST-T1 | 1.7 nM (GI50) | 3 days | Evaluate the antiproliferative effect of Nintedanib on GIST-T1 cells, results showed Nintedanib was more potent than imatinib and sunitinib. | Mol Oncol. 2022 Apr;16(8):1761-1774. |
| BaF3-KIT-T670I | 0.0003 µM | 3 days | Evaluate the antiproliferative effect of Nintedanib on KIT T670I mutant cells, results showed Nintedanib was more potent than sunitinib, avapritinib and ripretinib. | Mol Oncol. 2022 Apr;16(8):1761-1774. |
| Human pulmonary fibroblasts (HPFs) | 10 µM | 3 days | To evaluate the cytotoxicity of Nintedanib on bleomycin-induced senescent HPFs. Results showed that Nintedanib at 10 μM exhibited a senolytic effect, inducing cleavage of caspase-9 and caspase-7, and suppressing p16 expression. | Cell Death Dis. 2022 Sep 2;13(9):760. |
| Neonatal rat cardiomyocytes (CMs) | 1 µM | 48 hours | NTB treatment had no significant effect on agonist-induced hypertrophic response but significantly altered key signaling pathways. | Pharmacol Res. 2021 Jul;169:105605. |
| MRC-5 cells | 1 µM | 48 hours | Inhibited radiation-induced activation of TGF-β/Smad and PI3K/AKT/mTOR signaling pathways, reduced expression of fibrosis markers COL1A1, α-SMA, and CTGF | Int J Biol Sci. 2024 Jun 11;20(9):3353-3371. |
| L929 cells | 1 µM | 48 hours | Inhibited radiation-induced activation of TGF-β/Smad and PI3K/AKT/mTOR signaling pathways, reduced expression of fibrosis markers COL1A1, α-SMA, and CTGF | Int J Biol Sci. 2024 Jun 11;20(9):3353-3371. |
| NRK-49F rat renal fibroblasts | 1.5 µM | 48 hours | To test the effect of Nintedanib on TGFβ-induced fibroblast-to-myofibroblast differentiation, results showed Nintedanib significantly inhibited differentiation | Cell Death Dis. 2021 Oct 14;12(10):947. |
| Human ADPKD renal myofibroblasts | 1 µM | 48 hours | To test the effect of Nintedanib on cell viability, results showed Nintedanib significantly reduced cell viability | Cell Death Dis. 2021 Oct 14;12(10):947. |
| HuCCT1 and RBE | 0-10 µM | 48 hours | Nintedanib showed suppression effects on ICC cell lines only at high concentrations of 3 or 10 µM. | Br J Cancer. 2020 Mar;122(7):986-994. |
| Murine 3D-LTCs | 0.1 µM, 1 µM, 10 µM | 48 hours | Nintedanib significantly downregulated Fn1 and Col1a1 mRNA levels and increased proSP-C protein expression and SP-C secretion. | Respir Res. 2018 Sep 15;19(1):175. |
| Primary murine alveolar epithelial type II cells (pmATII) | 1 µM | 48 hours | Nintedanib significantly downregulated Fn1 mRNA levels and restored the expression of Sftpc, Nkx2.1, and Hopx to the level of the PBS control. | Respir Res. 2018 Sep 15;19(1):175. |
| Human precision-cut lung slices (PCLS) from patients with pulmonary fibrosis | 0.01 µM, 0.03 µM, 0.1 µM, 0.3 µM | 48 hours | To evaluate the effect of Nintedanib on type III collagen formation and degradation, results showed that 0.3 µM Nintedanib significantly reduced PRO-C3 and C3M levels | Respir Res. 2022 Aug 4;23(1):201. |
| Bleomycin-treated rat precision-cut lung slices (PCLS) | 0.01 µM, 0.03 µM, 0.1 µM, 0.3 µM | 48 hours | To evaluate the effect of Nintedanib on type III collagen degradation, results showed that 0.3 µM Nintedanib significantly reduced C3M levels by 40% | Respir Res. 2022 Aug 4;23(1):201. |
| Human Pulmonary Microvascular Endothelial Cells (HPMECs) | 400 mM | 6 hours | To investigate the inhibitory effect of Nintedanib on BLM-induced endothelial-mesenchymal transition (EndoMT). Results showed that Nintedanib treatment inhibited BLM-induced transformation of HPMECs into fibroblast-like morphology and reversed the changes in endothelial and mesenchymal markers. | Int J Mol Sci. 2022 Jul 25;23(15):8193. |
| Mouse splenocytes | 100 nM and 500 nM | 72 hours | NTB treatment induced an increase in Treg frequency and significantly increased CTLA-4 and PD-1 expressing CD4+ T cells, confirming the immunosuppressive phenotype of these cells. | Pharmacol Res. 2021 Jul;169:105605. |
| CAF1 and CAF2 | 0-10 µM | 72 hours | Nintedanib significantly suppressed CAF proliferation and α-SMA expression in a concentration-dependent manner. | Br J Cancer. 2020 Mar;122(7):986-994. |
| B16-F10 cells | up to 1 µM | 72 hours | To evaluate the antitumor effect of Nintedanib on B16-F10 cells, results showed that Nintedanib did not exhibit direct cytotoxicity to B16-F10 cells at concentrations up to 1 µM. | Br J Cancer. 2021 Mar;124(5):914-924. |
| Human 3D-LTCs | 1 µM | 72 hours | Nintedanib restored epithelial gene expression and increased proSP-C protein expression and SP-C secretion. | Respir Res. 2018 Sep 15;19(1):175. |
| Human ADPKD renal myofibroblasts | 1 µM | To test the effect of Nintedanib on cell migration, results showed Nintedanib significantly inhibited cell migration | Cell Death Dis. 2021 Oct 14;12(10):947. | |
| Administration | Dosage | Frequency | Description | References | ||
| Female ICR mice | Ovarian hyperstimulation syndrome (OHSS) model | Subcutaneous injection | 0.2 mL nintedanib suspension | 12 and 24 hours after hCG trigger | Nintedanib significantly alleviated the symptoms of OHSS, including weight change, ovarian weight, and peritoneal exudation level. Further studies showed that nintedanib inhibited corpus luteum development and angiogenesis, reducing the increase in vascular permeability. Additionally, nintedanib treatment did not increase the risk of thrombosis or bleeding. | Drug Des Devel Ther. 2022 Feb 18;16:397-411 |
| Sprague-Dawley rats | Bleomycin-induced pulmonary fibrosis | Intratracheal installation | 0.25 mL/kg | Two doses, 2 days apart, sacrificed 14 days after the last dose | To establish a pulmonary fibrosis model for subsequent in vitro experiments | Respir Res. 2022 Aug 4;23(1):201. |
| C57BL/6 J mice | Bleomycin-induced lung fibrosis model | Intraperitoneal injection | 0.5396 mg/kg | Three times per week for 24 days | To evaluate the senolytic effect of Nintedanib in a bleomycin-induced lung fibrosis model. Results showed that Nintedanib significantly reduced the number of SA βG-positive senescent cells, ameliorated collagen deposition, and inhibited STAT3 phosphorylation. | Cell Death Dis. 2022 Sep 2;13(9):760. |
| C57BL/6 mice | Bleomycin-induced pulmonary fibrosis model | Intratracheal administration | 2 U/kg | Single dose, sacrificed after 14 days | Nintedanib was not used in in vivo experiments | Respir Res. 2018 Sep 15;19(1):175. |
| Mice | Pkd1RC/RC mice | Intraperitoneal injection | 20 mg/kg | Every other day from three to five months of age | To test the effect of Nintedanib on renal cyst growth and fibrosis, results showed Nintedanib significantly reduced kidney size, kidney-to-body-weight ratio, cystic index, and fibrosis | Cell Death Dis. 2021 Oct 14;12(10):947. |
| C57BL/6 mice | MC38 and LLC tumor models | Oral | 30 mg/kg | 5 days ON, 1 day OFF, total 10 times | Significantly inhibited tumor growth, promoted tumor vessel normalization, increased immune cell infiltration and activation | Theranostics. 2022 Jan 1;12(2):747-766. |
| C57BL/6 mice | Radiation-induced pulmonary fibrosis model | Oral | 30 mg/kg | Once daily for 4 weeks | Alleviated radiation-induced lung pathological changes, suppressed collagen deposition, and improved overall health status of mice; mitigated radiation-induced inflammatory responses in epithelial cells by inhibiting PI3K/AKT and MAPK signaling pathways, and inhibited fibroblast-to-myofibroblast transition by suppressing TGF-β/Smad and PI3K/AKT/mTOR signaling pathways | Int J Biol Sci. 2024 Jun 11;20(9):3353-3371. |
| NOD-SCID mice | Xenograft model of HuCCT1 plus CAF cells | Oral | 30 mg/kg | Five times a week for two weeks | Nintedanib reduced xenografted ICC growth and activated CAFs expressing α-SMA, and combination therapy with gemcitabine showed the strongest inhibition of tumour growth. | Br J Cancer. 2020 Mar;122(7):986-994. |
| C57BL/6 mice | B16-F10 melanoma syngeneic model | Oral | 50 mg/kg | Five times a week for two weeks | To evaluate the antitumor efficacy of Nintedanib in a B16-F10 melanoma syngeneic model, results showed that Nintedanib significantly delayed tumor growth and prolonged survival of the mice without health-related toxicity. | Br J Cancer. 2021 Mar;124(5):914-924. |
| C57BL/6 mice | Bleomycin (BLM)-induced pulmonary fibrosis model | Oral gavage | 50 mg/kg | Once daily, 5 days per week for 3 weeks | To investigate the therapeutic effect of Nintedanib on BLM-induced pulmonary fibrosis. Results showed that Nintedanib treatment significantly alleviated pulmonary injury and fibrosis, suppressed EndoMT, and reduced FAK phosphorylation in murine lung tissues. | Int J Mol Sci. 2022 Jul 25;23(15):8193. |
| C57BL/6 mice | LPS-induced acute lung injury model | Oral gavage | 50 mg/kg | Once 24 hours and 10 minutes before | To assess the effect of nintedanib in attenuating the histopathological changes of LPS-induced ALI, results showed that nintedanib significantly reduced lung injury scores and neutrophil recruitment. | Int J Mol Sci. 2021 Sep 13;22(18):9898. |
| Male C57BL/6 mice | Bleomycin-induced pulmonary fibrosis model | Oral gavage | 50 mg/kg | Daily for five days every week | Nintedanib significantly decreased the histopathological changes and neutrophil recruitment in BLM-induced pulmonary fibrosis. Nintedanib mediated a downregulation of CXCR2 and VLA-4 expression, as well as an upregulation of GRK2 activity in peripheral blood neutrophils in BLM-induced pulmonary fibrosis. | Int J Mol Sci. 2020 Jul 2;21(13):4735 |
| BALB/C-nu mice | GIST-T1 xenograft model | Oral | 50 mg/kg and 100 mg/kg | Daily | Evaluate the antitumor effect of Nintedanib on GIST-T1 xenograft models, results showed Nintedanib inhibited tumor growth by 72.3% and 78.2% at doses of 50 mg/kg and 100 mg/kg, respectively. | Mol Oncol. 2022 Apr;16(8):1761-1774. |
| C57BL/6J mice | Heart failure model induced by Transverse Aortic Constriction (TAC) surgery | Oral gavage | 50mg/kg/day | Once daily, continued till 16 weeks post-TAC or till 8 weeks post-TAC followed by washout period | NTB treatment prevented TAC-induced cardiac functional decline and adverse cardiac remodeling, reduced cardiac fibrosis and hypertrophy, and decreased myocardial and systemic inflammation. The cardioprotective effects of NTB were sustained even after interruption of the treatment. | Pharmacol Res. 2021 Jul;169:105605. |
| Dose | Mice: 25 mg/kg - 100 mg/kg[2] (p.o.) Rat: 8.3 mg/kg– 41.5 mg/kg[3] (p.o.) |
||||||||||||||||||||||||||||||||||||||||||||||||
| Administration | p.o. | ||||||||||||||||||||||||||||||||||||||||||||||||
| Pharmacokinetics |
|
| 计算器 | ||||
| 存储液制备 | ![]() |
1mg | 5mg | 10mg |
|
1 mM 5 mM 10 mM |
1.54mL 0.31mL 0.15mL |
7.70mL 1.54mL 0.77mL |
15.39mL 3.08mL 1.54mL |
|
| CAS号 | 656247-18-6 |
| 分子式 | C33H39N5O7S |
| 分子量 | 649.76 |
| SMILES Code | O=C1NC2=C(C=CC(C(OC)=O)=C2)/C1=C(NC3=CC=C(N(C(CN4CCN(C)CC4)=O)C)C=C3)\C5=CC=CC=C5.CCS(=O)(O)=O |
| MDL No. | MFCD26142360 |
| 别名 | 尼达尼布乙磺酸盐 ;BIBF 1120 esylate; BIBF 1120 (esylate); Nintedanib; BIBF 1120; Intedanib; Nintedanib Ethanesulfonate Salt |
| 运输 | 蓝冰 |
| InChI Key | ZNMRDZZRAFJOKY-UHFFFAOYSA-N |
| Pubchem ID | 135476717 |
| 存储条件 |
In solvent -20°C: 3-6个月 -80°C: 12个月 Pure form Sealed in dry, 2-8°C |
| 溶解方案 |
DMSO: 40 mg/mL(61.56 mM),配合低频超声,并水浴加热至45℃助溶,注意:DMSO长时间开封后,会吸水并导致溶解能力下降,请避免使用长期开封的DMSO H2O: 15 mg/mL(23.09 mM),配合低频超声助溶 无水乙醇: 2.5 mg/mL(3.85 mM),配合低频超声助溶,注意:无水乙醇开封后,易挥发,也会吸收空气中的水分,导致溶解能力下降,请避免使用开封较久的乙醇 以下溶解方案都请先按照体外实验的方式配制澄清的储备液,再依次添加助溶剂: ——为保证实验结果的可靠性,澄清的储备液可以根据储存条件,适当保存;体内实验的工作液,建议现用现配,当天使用; 以下溶剂前显示的百分比是指该溶剂在终溶液中的体积占比;如在配制过程中出现沉淀、析出现象,可以通过加热和/或超声的方式助溶
|
沪公网安备 31011702889066号
沪ICP备2024050318号-1