Cetuximab是一种嵌合IgG1单克隆抗体,通过与EGFR胞外结构域结合来阻止其与配体结合。Cetuximab具有用于头颈部鳞状细胞癌和结直肠癌研究的潜力。


| 规格 | 价格 | 会员价 | 库存 | 数量 | |||
|---|---|---|---|---|---|---|---|
| {[ item.pr_size ]} |
{[ getRatePriceInt(item.pr_rmb, 1,1) ]} {[ getRatePriceInt(item.pr_rmb_sale, 1,1) ]} {[ suihuo_tips(item.pr_tag_price, item.pr_am) ]} |
{[ getRatePriceInt(item.pr_rmb, 1,1) ]} {[ getRatePriceInt(item.pr_rmb,item.pr_rate,1) ]} {[ suihuo_tips(item.pr_tag_price, item.pr_am) ]} |
{[ getRatePriceInt(item.pr_rmb, 1,1) ]}{[ suihuo_tips(item.pr_tag_price, item.pr_am) ]} | {[ getRatePrice(item.pr_rmb_sale, 1,1,item.mem_isinteger) ]} {[ getRatePrice(item.pr_rmb,item.pr_rate,item.mem_rate,item.mem_isinteger) ]} {[ getRatePrice(item.pr_rmb,1,item.mem_rate,item.mem_isinteger) ]} | 现货 | 1周 咨询 | - + |
快速发货 顺丰冷链运输,1-2 天到达
品质保证
技术支持
免费溶解

| 产品名称 | EGFR/ErbB1 ↓ ↑ | ErbB3 ↓ ↑ | ErbB4 ↓ ↑ | HER2/ErbB2 ↓ ↑ | mutant EGFR ↓ ↑ | 其他靶点 | 纯度 | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| WZ-3146 |
++++
EGFR (E746_A750), IC50: 2 nM EGFR (E746_A750/T790M), IC50: 14 nM |
99%+ | |||||||||||||||||
| Daphnetin |
+
EGFR, IC50: 7.67 μM |
PKA,PKC | 95% | ||||||||||||||||
| Lifirafenib |
++
EGFR, IC50: 29 nM |
+
EGFR(T790M/L858R), IC50: 495 nM |
98% | ||||||||||||||||
| PD168393 |
++++
EGFR, IC50: 0.70 nM |
99%+ | |||||||||||||||||
| Nazartinib |
++
mutant EGFR, Ki: 0.031 μM |
++
mutant EGFR, Ki: 0.031 μM |
98% | ||||||||||||||||
| Norcantharidin | ✔ | 98% | |||||||||||||||||
| CL-387785 |
++++
EGFR, IC50: 370 pM |
98% | |||||||||||||||||
| WHI-P154 |
+++
EGFR, IC50: 4 nM |
Src,VEGFR | 98% | ||||||||||||||||
| Tyrphostin A9 |
+
EGFR, IC50: 460 μM |
PDGFR | 98% | ||||||||||||||||
| AG 555 |
+
EGFR, IC50: 0.7 μM |
98% | |||||||||||||||||
| AG 494 |
+
EGFR, IC50: 1.2 μM |
99%+ | |||||||||||||||||
| AG-556 |
+
EGFR, IC50: 5 μM |
98% | |||||||||||||||||
| RG13022 |
+
EGFR, IC50: 4 μM |
99%+ | |||||||||||||||||
| Tyrphostin RG 14620 | ✔ | 99%+ | |||||||||||||||||
| Vandetanib |
+
EGFR, IC50: 500 nM |
99% | |||||||||||||||||
| CNX-2006 |
++
mutant EGFR, IC50: <20 nM |
++
mutant EGFR, IC50: <20 nM |
99% | ||||||||||||||||
| AZD3759 |
++++
EGFR (L858R), IC50: 0.2 nM EGFR (WT), IC50: 0.3 nM |
98% | |||||||||||||||||
| Erlotinib |
++++
EGFR, IC50: 2 nM |
95% | |||||||||||||||||
| Saracatinib |
+++
EGFR (L861Q), IC50: 4 nM EGFR, IC50: 5 nM |
99%+ | |||||||||||||||||
| AG1557 | ✔ | 99% | |||||||||||||||||
| Rociletinib |
++
EGFR (L858R/T790M), Ki: 21.5 nM EGFR (wt), Ki: 303.3 nM |
98% | |||||||||||||||||
| AG490 |
+
EGFR, IC50: 0.1 μM |
98% | |||||||||||||||||
| Cetuximab |
++++
EGFR, Kd: 0.39 nM |
95% | |||||||||||||||||
| Osimertinib |
++
WT EGFR, IC50: 12.92 nM L858R/T790M EGFR, IC50: 11.44 nM |
98% | |||||||||||||||||
| Osimertinib mesylate | ✔ | 98% (Content MsOH 15.2-18.2%) | |||||||||||||||||
| Chrysophanol | ✔ | mTOR | 98% | ||||||||||||||||
| PD153035 |
++++
EGFR, Ki: 5.2 pM |
99%+ | |||||||||||||||||
| Olmutinib | ✔ | BTK | 99%+ | ||||||||||||||||
| WZ4002 |
++++
EGFR (L858R/T790M), IC50: 8 nM EGFR (L858R), IC50: 2 nM |
99%+ | |||||||||||||||||
| Icotinib |
+++
EGFR, IC50: 5 nM |
99% | |||||||||||||||||
| Desmethyl Erlotinib HCl |
++++
EGFR, IC50: 2 nM |
98% | |||||||||||||||||
| Cyasterone | ✔ | 99%+ | |||||||||||||||||
| PP 3 |
+
EGFR tyrosine kinase, IC50: 2.7 μM |
98% | |||||||||||||||||
| WZ8040 | ✔ | 99%+ | |||||||||||||||||
| (-)-Epigallocatechin Gallate | ✔ | 99% | |||||||||||||||||
| AG 18 |
+
EGFR, IC50: 35 μM |
99%+ | |||||||||||||||||
| O-Desmethyl gefitinib |
++
EGFR, IC50: 36 nM |
99% | |||||||||||||||||
| Falnidamol | ✔ | 99%+ | |||||||||||||||||
| AZ-5104 |
++++
EGFR (L858R), IC50: 6 nM EGFR (L861Q) , IC50: <1 nM |
+++
ErbB4, IC50: 7 nM |
BRK | 99%+ | |||||||||||||||
| Butein | ✔ | 95% | |||||||||||||||||
| Genistein | ✔ | 98% | |||||||||||||||||
| SU5214 |
+
EGFR, IC50: 36.7 μM |
99%+ | |||||||||||||||||
| Naquotinib | ✔ | 99%+ | |||||||||||||||||
| Gefitinib |
++
EGFR, IC50: 15.5 nM |
+
EGFR (858R/T790M), IC50: 823.3 nM |
98% | ||||||||||||||||
| Theliatinib |
+++
WT EGFR, IC50: 3 nM |
++
EGFR T790M/L858R, IC50: 22 nM |
99% | ||||||||||||||||
| Lazertinib |
++++
WT EGFR, IC50: 76 nM L858R/T790M EGFR, IC50: 2 nM |
++++
Del19/T790M, IC50: 1.7 nM |
99%+ | ||||||||||||||||
| Gefitinib-based PROTAC 3 |
++
EGFR, DC50: 22.3 nM |
99%+ | |||||||||||||||||
| MTX-211 | ✔ | PI3K | 98% | ||||||||||||||||
| (E)-AG 99 | ✔ | 99%+ | |||||||||||||||||
| Licochalcone D | ✔ | PARP,Caspase | 99% | ||||||||||||||||
| Zipalertinib |
+++
EGFR WT, IC50: 8 nM EGFR (L861Q), IC50: 4.1 nM |
+++
HER4, IC50: 4 nM |
++++
EGFR(d746-750), IC50: 1.4 nM EGFR L858R, IC50: 2 nM |
97% | |||||||||||||||
| JND3229 |
+++
EGFR WT, IC50: 6.8 nM |
++
EGFR L858R/T790M, IC50: 30.5 nM |
99%+ | ||||||||||||||||
| Firmonertinib mesylate | ✔ | 99%+ | |||||||||||||||||
| Tyrphostin AG30 | ✔ | 99%+ | |||||||||||||||||
| EGFR-IN-12 |
++
EGFR, IC50: 21 nM |
99%+ | |||||||||||||||||
| Mobocertinib | ✔ | 98% | |||||||||||||||||
| (Rac)-JBJ-04-125-02 | ✔ | 95% | |||||||||||||||||
| (S)-Sunvozertinib | ✔ | 99% | |||||||||||||||||
| BLU-945 | ✔ | 95% | |||||||||||||||||
| Poziotinib |
+++
HER1, IC50: 3.2 nM |
++
HER4, IC50: 23.5 nM |
+++
HER2, IC50: 5.3 nM |
98% | |||||||||||||||
| TAK-285 |
++
EGFR/HER1, IC50: 23 nM |
+
HER4, IC50: 260 nM |
++
HER2, IC50: 17 nM |
99%+ | |||||||||||||||
| ARRY-380 analog | ✔ | 99% | |||||||||||||||||
| Canertinib |
++++
EGFR, IC50: 1.5 nM |
+++
ErbB2, IC50: 9.0 nM |
99%+ | ||||||||||||||||
| Dacomitinib |
+++
EGFR, IC50: 6.0 nM |
+
ErbB4, IC50: 73.7 nM |
+
ErbB2, IC50: 45.7 nM |
98% | |||||||||||||||
| EGFR/ErbB-2/ErbB-4 inhibitor-2 |
+
ErbB4, IC50: 1.91 μM |
+
ErbB2, IC50: 0.08 μM |
99%+ | ||||||||||||||||
| (E/Z)-CP-724714 |
++
HER2/ErbB2, IC50: 10 nM |
95% | |||||||||||||||||
| Lapatinib |
++
EGFR, IC50: 10.8 nM |
+
ErbB4, IC50: 367 nM |
+++
ErbB2, IC50: 9.2 nM |
98% | |||||||||||||||
| AEE788 |
++++
EGFR, IC50: 2 nM |
+
HER4/ErbB4, IC50: 160 nM |
+++
HER2/ErbB2, IC50: 6 nM |
c-Fms/CSF1R | 98+% | ||||||||||||||
| AV-412 free base |
++++
EGFR, IC50: 0.75 nM |
++
ErbB2, IC50: 19 nM |
++++
EGFRL858R/T790M, IC50: 0.51 nM EGFRT790M, IC50: 0.79 nM |
98+% | |||||||||||||||
| Neratinib |
+
EGFR, IC50: 92 nM |
+
HER2, IC50: 59 nM |
Src | 98% | |||||||||||||||
| BMS-599626 |
++
HER1, IC50: 20 nM |
+
HER4, IC50: 190 nM |
++
HER2, IC50: 30 nM |
98% | |||||||||||||||
| Tucatinib |
+++
ErbB2, IC50: 8 nM |
98% | |||||||||||||||||
| Allitinib |
++++
EGFR, IC50: 0.5 nM |
++++
ErbB4, IC50: 0.8 nM |
+++
ErbB2, IC50: 3.0 nM |
99% | |||||||||||||||
| Pelitinib |
+
EGFR, IC50: 38.5 nM |
+
ErbB2, IC50: 1.255 μM |
Src,Raf | 99%+ | |||||||||||||||
| Sapitinib |
+++
EGFR, IC50: 4 nM |
+++
ErbB3, IC50: 4 nM |
+++
ErbB2, IC50: 3 nM |
99%+ | |||||||||||||||
| CUDC-101 |
+++
EGFR, IC50: 2.4 nM |
++
HER2, IC50: 15.7 nM |
HDAC | 99%+ | |||||||||||||||
| Varlitinib |
+++
ErbB1, IC50: 7 nM |
++++
ErbB2, IC50: 2 nM |
99%+ | ||||||||||||||||
| Afatinib dimaleate |
++++
EGFR (L858R/T790M), IC50: 0.4 nM EGFR (wt), IC50: 0.5 nM |
++
HER2, IC50: 14 nM |
98% | ||||||||||||||||
| Canertinib 2HCl |
+++
EGFR, IC50: 7.4 nM |
+++
ErbB2, IC50: 9 nM |
99% | ||||||||||||||||
| Allitinib tosylate |
++++
EGFR (T790M/L858R), IC50: 12 nM EGFR, IC50: 0.5 nM |
++++
ErbB4, IC50: 0.8 nM |
+++
ErbB2, IC50: 3.0 nM |
99% | |||||||||||||||
| Tyrphostin AG 528 |
+
EGFR, IC50: 4.9 μM |
+
HER2, IC50: 2.1 μM |
97% | ||||||||||||||||
| Afatinib |
++++
EGFR (wt), IC50: 0.5 nM EGFR (L858R), IC50: 10 nM |
++++
ErbB4, IC50: 1 nM |
++
HER2, IC50: 14 nM |
99% | |||||||||||||||
| Pyrotinib dimaleate |
++
EGFR, IC50: 0.013 μM |
++
HER2, IC50: 0.038 μM |
98% | ||||||||||||||||
| Epertinib HCl |
++++
EGFR, IC50: 1.48 nM |
+++
HER4, IC50: 2.49 nM |
+++
HER2, IC50: 7.15 nM |
99% | |||||||||||||||
| Tuxobertinib |
++++
EGFR, Kd: 0.2 nM |
++++
HER2, Kd: 0.76 nM |
99% | ||||||||||||||||
| ALK-IN-1 |
++
EGFR(del19), IC50: 36.8 nM EGFR(C797S/del19), IC50: 138.6 nM |
ALK | 99% | ||||||||||||||||
| Brigatinib |
+
EGFR(C797S/T790M/del19), IC50: 67.2 nM EGFR(del19), IC50: 39.9 nM |
ALK,FLT3 | 98% | ||||||||||||||||
| Avitinib |
++++
EGFR L858R/T790M, IC50: 0.18 nM |
BTK | 99%+ | ||||||||||||||||
| EAI045 | ✔ | 97% | |||||||||||||||||
| Almonertinib | ✔ | 99% | |||||||||||||||||
| BI-4020 |
++++
EGFRdel19 T790M C797S, IC50: 0.2 nM |
99%+ | |||||||||||||||||
| EGFR-IN-7 |
++++
EGFRL858R/T790M, IC50: 0.19 nM EGFRd746-750/T790M/C797S, IC50: 0.26 nM |
99% | |||||||||||||||||
| 1. 鼠标悬停在“+”上可以显示相关IC50的具体数值。"+"越多,抑制作用越强。2. "✔"表示该化合物对相应的亚型有抑制作用,但抑制强度暂时没有相关数据。 | |||||||||||||||||||
| 靶点 |
|
| 蛋白种属 | Human |
| 交叉反应性 | Human,Mouse,Cynomolgus |
| Isotype | IgG1-Kappa |
| 内毒素 | < 0.001EU/μg, determined by LAL method. |
| 纯化方法 | Purified, Protein A, affinity column |
| 稀释缓冲液 | Sterile PBS or 0.9% saline for reconstitution/dilution. It is recommended to use the reconstituted/diluted product within one month. |
| Concentration | Treated Time | Description | References | |
| NK cells | 10 μg/mL | 24 hours | To evaluate the killing effect of NK cells on HNSCC cells in the presence of Lirilumab, results showed that Lirilumab significantly enhanced NK cell-mediated killing of tumor cells. | Head Neck. 2019 Aug;41(8):2591-2601 |
| IL-1R1 stable knockdown SQ20B cells | 1, 10, and 100 μg/mL | 48 h | IL-1R1 knockdown significantly suppressed cetuximab-induced cytokine secretion. | J Immunother Cancer. 2019 Mar 19;7(1):79 |
| MyD88 stable knockdown SQ20B cells | 1, 10, and 100 μg/mL | 48 h | MyD88 knockdown significantly suppressed cetuximab-induced cytokine secretion. | J Immunother Cancer. 2019 Mar 19;7(1):79 |
| SQ20B cells | 1, 10, and 100 μg/mL | 48 h | Cetuximab at a dose of 100 μg/mL significantly increased IL-1α and IL-8 secretion, and increased IL-6 secretion at all tested concentrations. | J Immunother Cancer. 2019 Mar 19;7(1):79 |
| Cal-27 cells | 1, 10, and 100 μg/mL | 48 h | Cetuximab at a dose of 100 μg/mL significantly increased IL-1α, IL-6, and IL-8 secretion. | J Immunother Cancer. 2019 Mar 19;7(1):79 |
| DLD-1 | 100 μg/ml | 24 h | To evaluate the cytotoxic and antiproliferative effects of Cetuximab combined with RSL3 on KRAS mutant CRC cells. Results showed that the combination treatment significantly inhibited cell viability and proliferation. | Cell Death Dis. 2021 Nov 13;12(11):1079 |
| HCT116 | 100 μg/ml | 24 h | To evaluate the cytotoxic and antiproliferative effects of Cetuximab combined with RSL3 on KRAS mutant CRC cells. Results showed that the combination treatment significantly inhibited cell viability and proliferation. | Cell Death Dis. 2021 Nov 13;12(11):1079 |
| C10 | 1 ng/µL | 72 h | To assess the efficacy of targeting the AURKA/YAP1 axis to overcome cetuximab resistance | Br J Cancer. 2024 May;130(8):1402-1413 |
| SW48 | 10 ng/µL | 72 h | To assess the efficacy of targeting the AURKA/YAP1 axis to overcome cetuximab resistance | Br J Cancer. 2024 May;130(8):1402-1413 |
| HCT116 cells | 0.1 μM or 1 μM | 24 h | To evaluate the effect of Cetuximab on EGFR protein expression. Results showed that Cetuximab only marginally affected EGFR levels in HCT116 cells. | J Nucl Med. 2018 Oct;59(10):1558-1565 |
| H1975 cells | 0.1 μM or 1 μM | 24 h | To evaluate the effect of Cetuximab on EGFR protein expression. Results showed that 0.1 μM Cetuximab reduced EGFR protein expression by 3-fold in H1975 cells, while the effect was slightly attenuated at the higher dose (1 μM). | J Nucl Med. 2018 Oct;59(10):1558-1565 |
| UMSCC 103 | 20 μM | 48 h | Test the cytotoxic effect of Cetuximab on UMSCC 103, finding significant cell death when combined with ICI | Cell Death Dis. 2023 Sep 19;14(9):613 |
| Patient-derived colorectal cancer organoids (PDXO) | 20 μg/mL | 72 h | To evaluate the effect of cetuximab on BIM protein expression, results showed that cetuximab upregulated BIM protein levels. | Clin Cancer Res. 2023 Mar 14;29(6):1102-1113 |
| Patient-derived colorectal cancer organoids (PDXO) | 20 μg/mL | 1 week | To evaluate the effect of cetuximab on PDXO cell viability, results showed that cetuximab inhibited cell growth. | Clin Cancer Res. 2023 Mar 14;29(6):1102-1113 |
| Administration | Dosage | Frequency | Description | References | ||
| Athymic nu/nu mice | Cal-27 and SQ20B xenograft models | Intraperitoneal injection | 2 mg/kg | Twice weekly for 2 weeks | IL-1 blockade (using anakinra) did not affect the anti-tumor efficacy of cetuximab. | J Immunother Cancer. 2019 Mar 19;7(1):79 |
| BALB/c nude mice | DLD-1 xenograft model | Intraperitoneal injection | 13 mg/kg | Once daily for 17 days | To evaluate the antitumor effects of Cetuximab combined with RSL3 on KRAS mutant CRC xenograft models. Results showed that the combination treatment significantly reduced tumor volume and increased MDA levels. | Cell Death Dis. 2021 Nov 13;12(11):1079 |
| Mice | Patient-derived xenograft (PDX) models of KRAS-mutated colorectal cancer | Intraperitoneal injection | 25 mg/kg | Twice weekly, for 28 days or longer | To evaluate the efficacy of combined Cetuximab and Trametinib therapy in KRAS-mutated CRC PDX models. The combination therapy induced disease control (partial response or stable disease) in 74% of the models analyzed, with 47% achieving partial response. | Mol Oncol. 2023 Nov;17(11):2396-2414 |
| Nude mice | Orthotopic HNSCC mouse model | Intraperitoneal injection | 40 mg/kg | Every 3 days for 4 weeks | Evaluate the effect of Cetuximab alone or in combination with ICI on HNSCC tumor growth, finding significant tumor growth delay with combination therapy | Cell Death Dis. 2023 Sep 19;14(9):613 |
| BALB/c nude mice | H1975 tumor model (non-small cell lung cancer) and HCT116 tumor model (colorectal cancer) | Intravenous injection (Cetuximab) or intraperitoneal injection (Gemcitabine) | 10 mg/kg | Cetuximab was administered on day 1 or days 1 and 2, Gemcitabine on day 2, and imaging was performed on day 3. | To evaluate the effect of Cetuximab alone or in combination with Gemcitabine on tumor growth and biological markers. Results showed that repeated doses of Cetuximab significantly increased 18F-ICMT-11 uptake and cleaved caspase-3 staining in H1975 tumors, while a single dose was insufficient to induce apoptosis but affected proliferation. 18F-FLT uptake was significantly reduced, paralleled by a decrease in Ki-67 and marked tumor growth delay. HCT116 tumors were insensitive to Cetuximab treatment. | J Nucl Med. 2018 Oct;59(10):1558-1565 |
| NSG mice | CDX-humanized mouse model | Intravenous injection | 0.4 mg/kg/dose | Weekly for 5 weeks | Evaluate the antitumor effects of cetuximab in combination with NK cells | J Immunother Cancer. 2024 Mar 27;12(3):e008585 |
| NOD/SCID mice | Patient-derived xenograft models (PDX) | Intraperitoneal injection | 20 mg/kg | Twice weekly for 5 weeks | To evaluate the effect of cetuximab on tumor volume in PDX models, results showed that cetuximab significantly reduced tumor volume. | Clin Cancer Res. 2023 Mar 14;29(6):1102-1113 |
| CAS号 | 205923-56-4 |
| 分子量 | 145.56 kDa |
| SMILES Code | NONE |
| MDL No. | MFCD06407972 |
| 别名 | C225 |
| 运输 | 蓝冰 |
| 存储条件 |
In solvent -20°C:3-6个月-80°C:24个月 |
沪公网安备 31011702889066号
沪ICP备2024050318号-1