货号:A170920
同义名:
马来酸阿法替尼
/ BIBW 2992MA2; Afatinib (maleate)
Afatinib dimaleate(BIBW 2992)二马来酸盐是一种口服活性、高效且不可逆的ErbB家族(EGFR和HER2)双特异性抑制剂,对EGFRwt、EGFRL858R、EGFRL858R/T790M和HER2的IC50分别为0.5 nM、0.4 nM、10 nM和14 nM。它用于食管鳞状细胞癌(ESCC)、非小细胞肺癌(NSCLC)和胃癌的研究。


| 规格 | 价格 | 会员价 | 库存 | 数量 | |||
|---|---|---|---|---|---|---|---|
| {[ item.pr_size ]} |
{[ getRatePriceInt(item.pr_rmb, 1,1) ]} {[ getRatePriceInt(item.pr_rmb_sale, 1,1) ]} {[ suihuo_tips(item.pr_tag_price, item.pr_am) ]} |
{[ getRatePriceInt(item.pr_rmb, 1,1) ]} {[ getRatePriceInt(item.pr_rmb,item.pr_rate,1) ]} {[ suihuo_tips(item.pr_tag_price, item.pr_am) ]} |
{[ getRatePriceInt(item.pr_rmb, 1,1) ]}{[ suihuo_tips(item.pr_tag_price, item.pr_am) ]} | {[ getRatePrice(item.pr_rmb_sale, 1,1,item.mem_isinteger) ]} {[ getRatePrice(item.pr_rmb,item.pr_rate,item.mem_rate,item.mem_isinteger) ]} {[ getRatePrice(item.pr_rmb,1,item.mem_rate,item.mem_isinteger) ]} | 现货 | 1周 咨询 | - + |
快速发货 顺丰冷链运输,1-2 天到达
品质保证
技术支持
免费溶解

| 产品名称 | EGFR/ErbB1 ↓ ↑ | ErbB3 ↓ ↑ | ErbB4 ↓ ↑ | HER2/ErbB2 ↓ ↑ | mutant EGFR ↓ ↑ | 其他靶点 | 纯度 | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| WZ-3146 |
++++
EGFR (E746_A750), IC50: 2 nM EGFR (E746_A750/T790M), IC50: 14 nM |
99%+ | |||||||||||||||||
| Daphnetin |
+
EGFR, IC50: 7.67 μM |
PKC,PKA | 95% | ||||||||||||||||
| Lifirafenib |
++
EGFR, IC50: 29 nM |
+
EGFR(T790M/L858R), IC50: 495 nM |
98% | ||||||||||||||||
| PD168393 |
++++
EGFR, IC50: 0.70 nM |
99%+ | |||||||||||||||||
| Nazartinib |
++
mutant EGFR, Ki: 0.031 μM |
++
mutant EGFR, Ki: 0.031 μM |
98% | ||||||||||||||||
| Norcantharidin | ✔ | 98% | |||||||||||||||||
| CL-387785 |
++++
EGFR, IC50: 370 pM |
98% | |||||||||||||||||
| WHI-P154 |
+++
EGFR, IC50: 4 nM |
Src,VEGFR | 98% | ||||||||||||||||
| Tyrphostin A9 |
+
EGFR, IC50: 460 μM |
PDGFR | 98% | ||||||||||||||||
| AG 555 |
+
EGFR, IC50: 0.7 μM |
98% | |||||||||||||||||
| AG 494 |
+
EGFR, IC50: 1.2 μM |
99%+ | |||||||||||||||||
| AG-556 |
+
EGFR, IC50: 5 μM |
98% | |||||||||||||||||
| RG13022 |
+
EGFR, IC50: 4 μM |
99%+ | |||||||||||||||||
| Tyrphostin RG 14620 | ✔ | 99%+ | |||||||||||||||||
| Vandetanib |
+
EGFR, IC50: 500 nM |
99% | |||||||||||||||||
| CNX-2006 |
++
mutant EGFR, IC50: <20 nM |
++
mutant EGFR, IC50: <20 nM |
99% | ||||||||||||||||
| AZD3759 |
++++
EGFR (WT), IC50: 0.3 nM EGFR (L858R), IC50: 0.2 nM |
98% | |||||||||||||||||
| Erlotinib |
++++
EGFR, IC50: 2 nM |
95% | |||||||||||||||||
| Saracatinib |
+++
EGFR (L861Q), IC50: 4 nM EGFR, IC50: 5 nM |
99%+ | |||||||||||||||||
| AG1557 | ✔ | 99% | |||||||||||||||||
| Rociletinib |
++
EGFR (wt), Ki: 303.3 nM EGFR (L858R/T790M), Ki: 21.5 nM |
98% | |||||||||||||||||
| AG490 |
+
EGFR, IC50: 0.1 μM |
98% | |||||||||||||||||
| Cetuximab |
++++
EGFR, Kd: 0.39 nM |
95% | |||||||||||||||||
| Osimertinib |
++
WT EGFR, IC50: 12.92 nM L858R/T790M EGFR, IC50: 11.44 nM |
98% | |||||||||||||||||
| Osimertinib mesylate | ✔ | 98% (Content MsOH 15.2-18.2%) | |||||||||||||||||
| Chrysophanol | ✔ | mTOR | 98% | ||||||||||||||||
| PD153035 |
++++
EGFR, Ki: 5.2 pM |
99%+ | |||||||||||||||||
| Olmutinib | ✔ | BTK | 99%+ | ||||||||||||||||
| WZ4002 |
++++
EGFR (L858R/T790M), IC50: 8 nM EGFR (L858R), IC50: 2 nM |
99%+ | |||||||||||||||||
| Icotinib |
+++
EGFR, IC50: 5 nM |
99% | |||||||||||||||||
| Desmethyl Erlotinib HCl |
++++
EGFR, IC50: 2 nM |
98% | |||||||||||||||||
| Cyasterone | ✔ | 99%+ | |||||||||||||||||
| PP 3 |
+
EGFR tyrosine kinase, IC50: 2.7 μM |
98% | |||||||||||||||||
| WZ8040 | ✔ | 99%+ | |||||||||||||||||
| (-)-Epigallocatechin Gallate | ✔ | 99% | |||||||||||||||||
| AG 18 |
+
EGFR, IC50: 35 μM |
99%+ | |||||||||||||||||
| O-Desmethyl gefitinib |
++
EGFR, IC50: 36 nM |
99% | |||||||||||||||||
| Falnidamol | ✔ | 99%+ | |||||||||||||||||
| AZ-5104 |
++++
EGFR (L861Q) , IC50: <1 nM EGFR (L858R), IC50: 6 nM |
+++
ErbB4, IC50: 7 nM |
BRK | 99%+ | |||||||||||||||
| Butein | ✔ | 95% | |||||||||||||||||
| Genistein | ✔ | 98% | |||||||||||||||||
| SU5214 |
+
EGFR, IC50: 36.7 μM |
99%+ | |||||||||||||||||
| Naquotinib | ✔ | 99%+ | |||||||||||||||||
| Gefitinib |
++
EGFR, IC50: 15.5 nM |
+
EGFR (858R/T790M), IC50: 823.3 nM |
98% | ||||||||||||||||
| Theliatinib |
+++
WT EGFR, IC50: 3 nM |
++
EGFR T790M/L858R, IC50: 22 nM |
99% | ||||||||||||||||
| Lazertinib |
++++
WT EGFR, IC50: 76 nM L858R/T790M EGFR, IC50: 2 nM |
++++
Del19/T790M, IC50: 1.7 nM |
99%+ | ||||||||||||||||
| Gefitinib-based PROTAC 3 |
++
EGFR, DC50: 22.3 nM |
99%+ | |||||||||||||||||
| MTX-211 | ✔ | PI3K | 98% | ||||||||||||||||
| (E)-AG 99 | ✔ | 99%+ | |||||||||||||||||
| Licochalcone D | ✔ | Caspase,PARP | 99% | ||||||||||||||||
| Zipalertinib |
+++
EGFR (L861Q), IC50: 4.1 nM EGFR WT, IC50: 8 nM |
+++
HER4, IC50: 4 nM |
++++
EGFR(d746-750), IC50: 1.4 nM EGFR L858R, IC50: 2 nM |
97% | |||||||||||||||
| JND3229 |
+++
EGFR WT, IC50: 6.8 nM |
++
EGFR L858R/T790M, IC50: 30.5 nM |
99%+ | ||||||||||||||||
| Firmonertinib mesylate | ✔ | 99%+ | |||||||||||||||||
| Tyrphostin AG30 | ✔ | 99%+ | |||||||||||||||||
| EGFR-IN-12 |
++
EGFR, IC50: 21 nM |
99%+ | |||||||||||||||||
| Mobocertinib | ✔ | 98% | |||||||||||||||||
| (Rac)-JBJ-04-125-02 | ✔ | 95% | |||||||||||||||||
| (S)-Sunvozertinib | ✔ | 99% | |||||||||||||||||
| BLU-945 | ✔ | 95% | |||||||||||||||||
| Poziotinib |
+++
HER1, IC50: 3.2 nM |
++
HER4, IC50: 23.5 nM |
+++
HER2, IC50: 5.3 nM |
98% | |||||||||||||||
| TAK-285 |
++
EGFR/HER1, IC50: 23 nM |
+
HER4, IC50: 260 nM |
++
HER2, IC50: 17 nM |
99%+ | |||||||||||||||
| ARRY-380 analog | ✔ | 99% | |||||||||||||||||
| Canertinib |
++++
EGFR, IC50: 1.5 nM |
+++
ErbB2, IC50: 9.0 nM |
99%+ | ||||||||||||||||
| Dacomitinib |
+++
EGFR, IC50: 6.0 nM |
+
ErbB4, IC50: 73.7 nM |
+
ErbB2, IC50: 45.7 nM |
98% | |||||||||||||||
| EGFR/ErbB-2/ErbB-4 inhibitor-2 |
+
ErbB4, IC50: 1.91 μM |
+
ErbB2, IC50: 0.08 μM |
99%+ | ||||||||||||||||
| (E/Z)-CP-724714 |
++
HER2/ErbB2, IC50: 10 nM |
95% | |||||||||||||||||
| Lapatinib |
++
EGFR, IC50: 10.8 nM |
+
ErbB4, IC50: 367 nM |
+++
ErbB2, IC50: 9.2 nM |
98% | |||||||||||||||
| AEE788 |
++++
EGFR, IC50: 2 nM |
+
HER4/ErbB4, IC50: 160 nM |
+++
HER2/ErbB2, IC50: 6 nM |
c-Fms/CSF1R | 98+% | ||||||||||||||
| AV-412 free base |
++++
EGFR, IC50: 0.75 nM |
++
ErbB2, IC50: 19 nM |
++++
EGFRL858R/T790M, IC50: 0.51 nM EGFRT790M, IC50: 0.79 nM |
98+% | |||||||||||||||
| Neratinib |
+
EGFR, IC50: 92 nM |
+
HER2, IC50: 59 nM |
Src | 98% | |||||||||||||||
| BMS-599626 |
++
HER1, IC50: 20 nM |
+
HER4, IC50: 190 nM |
++
HER2, IC50: 30 nM |
98% | |||||||||||||||
| Tucatinib |
+++
ErbB2, IC50: 8 nM |
98% | |||||||||||||||||
| Allitinib |
++++
EGFR, IC50: 0.5 nM |
++++
ErbB4, IC50: 0.8 nM |
+++
ErbB2, IC50: 3.0 nM |
99% | |||||||||||||||
| Pelitinib |
+
EGFR, IC50: 38.5 nM |
+
ErbB2, IC50: 1.255 μM |
Src,Raf | 99%+ | |||||||||||||||
| Sapitinib |
+++
EGFR, IC50: 4 nM |
+++
ErbB3, IC50: 4 nM |
+++
ErbB2, IC50: 3 nM |
99%+ | |||||||||||||||
| CUDC-101 |
+++
EGFR, IC50: 2.4 nM |
++
HER2, IC50: 15.7 nM |
HDAC | 99%+ | |||||||||||||||
| Varlitinib |
+++
ErbB1, IC50: 7 nM |
++++
ErbB2, IC50: 2 nM |
99%+ | ||||||||||||||||
| Afatinib dimaleate |
++++
EGFR (wt), IC50: 0.5 nM EGFR (L858R/T790M), IC50: 0.4 nM |
++
HER2, IC50: 14 nM |
98% | ||||||||||||||||
| Canertinib 2HCl |
+++
EGFR, IC50: 7.4 nM |
+++
ErbB2, IC50: 9 nM |
99% | ||||||||||||||||
| Allitinib tosylate |
++++
EGFR (T790M/L858R), IC50: 12 nM EGFR, IC50: 0.5 nM |
++++
ErbB4, IC50: 0.8 nM |
+++
ErbB2, IC50: 3.0 nM |
99% | |||||||||||||||
| Tyrphostin AG 528 |
+
EGFR, IC50: 4.9 μM |
+
HER2, IC50: 2.1 μM |
97% | ||||||||||||||||
| Afatinib |
++++
EGFR (wt), IC50: 0.5 nM EGFR (L858R), IC50: 10 nM |
++++
ErbB4, IC50: 1 nM |
++
HER2, IC50: 14 nM |
99% | |||||||||||||||
| Pyrotinib dimaleate |
++
EGFR, IC50: 0.013 μM |
++
HER2, IC50: 0.038 μM |
98% | ||||||||||||||||
| Epertinib HCl |
++++
EGFR, IC50: 1.48 nM |
+++
HER4, IC50: 2.49 nM |
+++
HER2, IC50: 7.15 nM |
99% | |||||||||||||||
| Tuxobertinib |
++++
EGFR, Kd: 0.2 nM |
++++
HER2, Kd: 0.76 nM |
99% | ||||||||||||||||
| ALK-IN-1 |
++
EGFR(C797S/del19), IC50: 138.6 nM EGFR(del19), IC50: 36.8 nM |
ALK | 99% | ||||||||||||||||
| Brigatinib |
+
EGFR(C797S/T790M/del19), IC50: 67.2 nM EGFR(del19), IC50: 39.9 nM |
ALK,FLT3 | 98% | ||||||||||||||||
| Avitinib |
++++
EGFR L858R/T790M, IC50: 0.18 nM |
BTK | 99%+ | ||||||||||||||||
| EAI045 | ✔ | 97% | |||||||||||||||||
| Almonertinib | ✔ | 99% | |||||||||||||||||
| BI-4020 |
++++
EGFRdel19 T790M C797S, IC50: 0.2 nM |
99%+ | |||||||||||||||||
| EGFR-IN-7 |
++++
EGFRL858R/T790M, IC50: 0.19 nM EGFRd746-750/T790M/C797S, IC50: 0.26 nM |
99% | |||||||||||||||||
| 1. 鼠标悬停在“+”上可以显示相关IC50的具体数值。"+"越多,抑制作用越强。2. "✔"表示该化合物对相应的亚型有抑制作用,但抑制强度暂时没有相关数据。 | |||||||||||||||||||
| 产品名称 | HER2 ↓ ↑ | 其他靶点 | 纯度 | ||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Poziotinib |
++++
HER2, IC50: 5.3 nM |
98% | |||||||||||||||||
| Tyrphostin AG 879 |
+
HER2-Neu, IC50: 1.0 μM |
95% | |||||||||||||||||
| TAK-285 |
+
HER2, IC50: 17 nM |
99%+ | |||||||||||||||||
| ARRY-380 analog | ✔ | 99% | |||||||||||||||||
| Canertinib |
+++
ErbB2, IC50: 9.0 nM |
EGFR | 99%+ | ||||||||||||||||
| (E/Z)-CP-724714 |
++
HER2/ErbB2, IC50: 10 nM |
95% | |||||||||||||||||
| Lapatinib |
+++
ErbB2, IC50: 9.2 nM |
EGFR | 98% | ||||||||||||||||
| AEE788 |
++++
HER2/ErbB2, IC50: 6 nM |
EGFR | 98+% | ||||||||||||||||
| Neratinib |
+
HER2, IC50: 59 nM |
EGFR,Src | 98% | ||||||||||||||||
| BMS-599626 |
+
HER2, IC50: 30 nM |
98% | |||||||||||||||||
| Mubritinib |
++++
HER2/ErbB2, IC50: 6.0 nM |
99%+ | |||||||||||||||||
| Tucatinib |
+++
ErbB2, IC50: 8 nM |
98% | |||||||||||||||||
| Sapitinib |
++++
ErbB2, IC50: 3 nM |
EGFR | 99%+ | ||||||||||||||||
| CUDC-101 |
++
HER2, IC50: 15.7 nM |
EGFR,HDAC | 99%+ | ||||||||||||||||
| Afatinib dimaleate |
++
HER2, IC50: 14 nM |
98% | |||||||||||||||||
| Afatinib |
++
HER2, IC50: 14 nM |
99% | |||||||||||||||||
| Pertuzumab | ✔ | 95% | |||||||||||||||||
| Trastuzumab | ✔ | 99% | |||||||||||||||||
| 1. 鼠标悬停在“+”上可以显示相关IC50的具体数值。"+"越多,抑制作用越强。2. "✔"表示该化合物对相应的亚型有抑制作用,但抑制强度暂时没有相关数据。 | |||||||||||||||||||
| 靶点 |
|
| 描述 | EGFR (epidermal growth factor receptor) family consists of four members that belong to the ErbB lineage of proteins (ErbB1–4) with an external domain that binds activating ligands, such as EGF, and is overexpressed in a significant percentage of carcinomas and contributes to the malignant phenotype. Upon activation, EGFR phosphorylates both the receptor itself and a variety of “effector” protein. Afatinib Dimaleate is the dimaleate form of Afatinib. Afatinib is an irreversible inhibitor of pan-ErbB inhibitor with IC50 values of 0.4nM, 0.5nM, 10nM, 14nM and 1nM for EGFR (L858R), EGFR (wt), EGFR (L858R/T790M), HER2 (measured by cell-free in vitro kinase assays) and ErbB4, respectively. Afatinib displays potent cellular effects on both EGFR and HER2 phosphorylation in cell lines with the in vitro kinase results, as well as anchorage-independent proliferation in NIH-3T3 cells ectopically expressing EGFR mutants. Afatinib inhibited survival of human NSCLC cell lines expressing HER2 776insV (NCI-H1781) or EGFR E746_A750del (HCC827), but showed no activity toward A549 cells, which expressed wild-type EGFR and HER2, but simultaneously harboring an oncogenic Kras G12S point mutation. Daily oral treatment with Afatinib at dose of 20mg/kg for 25 days resulted in dramatic tumor regression and downregulation of EGFR and AKT phosphorylation in A431 cells xenografted models. Also the tumor regression by Afatinib can be observed in NCI-N87 cells and H1975 cells xenografted animals. |
| Concentration | Treated Time | Description | References | |
| ICC11 cell line | 100 nM | 5 days | To evaluate the effect of Afatinib in combination with FGFR inhibitors on cell death induction in FGFR2 fusion-positive ICC cell lines. Results showed that Afatinib significantly enhanced the cell death induction effect of FGFR inhibitors. | Cancer Discov. 2022 May 2;12(5):1378-1395. |
| ICC10-6 cell line | 100 nM | 5 days | To evaluate the effect of Afatinib in combination with FGFR inhibitors on cell death induction in FGFR2 fusion-positive ICC cell lines. Results showed that Afatinib significantly enhanced the cell death induction effect of FGFR inhibitors. | Cancer Discov. 2022 May 2;12(5):1378-1395. |
| ICC21 cell line | 100 nM | 5 days | To evaluate the effect of Afatinib in combination with FGFR inhibitors on cell death induction in FGFR2 fusion-positive ICC cell lines. Results showed that Afatinib significantly enhanced the cell death induction effect of FGFR inhibitors. | Cancer Discov. 2022 May 2;12(5):1378-1395. |
| ICC13-7 cell line | 100 nM | 5 days | To evaluate the effect of Afatinib in combination with FGFR inhibitors on cell death induction in FGFR2 fusion-positive ICC cell lines. Results showed that Afatinib significantly enhanced the cell death induction effect of FGFR inhibitors. | Cancer Discov. 2022 May 2;12(5):1378-1395. |
| Hs746T cell line | 0.001, 0.01, 0.5, or 1 μM | 20 min | Hs746T cells did not respond to afatinib, and MET amplification was identified as a potential resistance factor. | Mol Oncol. 2018 Apr;12(4):441-462. |
| MKN7 cell line | 0.001, 0.01, 0.5, or 1 μM | 20 min | Trastuzumab treatment resulted in a moderate, nonsignificant decrease in HER2 phosphorylation. Afatinib slightly decreased the phosphorylation of EGFR and HER2 (nonsignificantly). | Mol Oncol. 2018 Apr;12(4):441-462. |
| MKN1 cell line | 0.001, 0.01, 0.5, or 1 μM | 20 min | Trastuzumab treatment had no effect in the cell line MKN1. Phosphorylation of EGFR was increased by EGF treatment and decreased by afatinib treatment (nonsignificantly). | Mol Oncol. 2018 Apr;12(4):441-462. |
| NCI-N87 cell line | 0.001, 0.01, 0.5, or 1 μM | 20 min | Afatinib alone or in combination with trastuzumab influenced HER kinases in all cell lines; that is, the effects of monotherapy and combination therapy were transduced to the intracellular kinase network. | Mol Oncol. 2018 Apr;12(4):441-462. |
| Human ESCC cell lines TE-10 | 0, 10 nM, 100 nM, 1 μM | 48 h | To evaluate the anti-proliferative activity of Afatinib on TE-10 cells and its effects on EGFR downstream signaling molecules. Results showed that Afatinib effectively inhibited EGFR phosphorylation. | J Hematol Oncol. 2018 Aug 29;11(1):109. |
| Human ESCC cell lines TE-1 cell line | 0, 10 nM, 100 nM, 1 μM | 48 h | To evaluate the anti-proliferative activity of Afatinib on TE-1 cells and its effects on EGFR downstream signaling molecules. Results showed that Afatinib effectively inhibited EGFR phosphorylation but failed to significantly suppress pERK in insensitive cells. | J Hematol Oncol. 2018 Aug 29;11(1):109. |
| Human ESCC cell lines KYSE510 | 0, 10 nM, 100 nM, 1 μM | 48 h | To evaluate the anti-proliferative activity of Afatinib on KYSE510 cells and its effects on EGFR downstream signaling molecules. Results showed that Afatinib effectively inhibited EGFR phosphorylation but failed to significantly suppress pS6 and pERK in insensitive cells. | J Hematol Oncol. 2018 Aug 29;11(1):109. |
| Human ESCC cell lines KYSE140 | 0, 10 nM, 100 nM, 1 μM | 48 h | To evaluate the anti-proliferative activity of Afatinib on KYSE140 cells and its effects on EGFR downstream signaling molecules. Results showed that Afatinib effectively inhibited EGFR phosphorylation and significantly suppressed pS6 and pERK in sensitive cells. | J Hematol Oncol. 2018 Aug 29;11(1):109. |
| Human ESCC cell lines KYSE450 | 0, 10 nM, 100 nM, 1 μM | 48 h | To evaluate the anti-proliferative activity of Afatinib on KYSE450 cells and its effects on EGFR downstream signaling molecules. Results showed that Afatinib effectively inhibited EGFR phosphorylation and significantly suppressed pS6 and pERK in sensitive cells. | J Hematol Oncol. 2018 Aug 29;11(1):109. |
| Human ESCC cell lines EC109 | 0, 10 nM, 100 nM, 1 μM | 48 h | To evaluate the anti-proliferative activity of Afatinib on EC109 cells and its effects on EGFR downstream signaling molecules. Results showed that Afatinib effectively inhibited EGFR phosphorylation and significantly suppressed pS6 and pERK in sensitive cells. | J Hematol Oncol. 2018 Aug 29;11(1):109. |
| ESTDAB105 | 2 µM | 72 h | Evaluate the effect of combination therapy on BRAF/NRAS wild-type melanoma cells, results showed significant reduction in cell viability. | Cell Death Dis. 2019 Sep 10;10(9):663. |
| ESTDAB102 | 2 µM | 72 h | Evaluate the effect of combination therapy on NRAS-mutant melanoma cells, results showed significant reduction in cell viability. | Cell Death Dis. 2019 Sep 10;10(9):663. |
| SkMel2 cells | 2 µM | 72 h | Evaluate the effect of combination therapy on NRAS-mutant melanoma cells, results showed significant reduction in cell viability. | Cell Death Dis. 2019 Sep 10;10(9):663. |
| A375VR4 cells | 2 µM | 72 h | Evaluate the effect of combination therapy on drug-resistant melanoma cells, results showed significant reduction in cell viability. | Cell Death Dis. 2019 Sep 10;10(9):663. |
| A375 melanoma cells | 2 µM | 72 h | Evaluate the effect of Afatinib and Crizotinib combination therapy on melanoma cell viability, results showed significant reduction in cell viability. | Cell Death Dis. 2019 Sep 10;10(9):663. |
| H2073-ASV cell lines | 10 nM | 2 weeks | Evaluate the growth inhibitory effect of afatinib on EGFR Ex20Ins mutant cells | Mol Cancer Ther. 2018 May;17(5):885-896. |
| H2073-SVD cell lines | 10 nM | 2 weeks | Evaluate the growth inhibitory effect of afatinib on EGFR Ex20Ins mutant cells | Mol Cancer Ther. 2018 May;17(5):885-896. |
| NCI-H1781 | 5 nM-0.4 μM | 6 months | Establish afatinib-resistant cell lines to study resistance mechanisms | Cancer Sci. 2018 May;109(5):1493-1502. |
| NCI-H2170 | 5 nM-2 μM | 6 months | Establish afatinib-resistant cell lines to study resistance mechanisms | Cancer Sci. 2018 May;109(5):1493-1502. |
| NSCLC cell lines Calu3 | 5 nM-2 μM | 6 months | Establish afatinib-resistant cell lines to study resistance mechanisms | Cancer Sci. 2018 May;109(5):1493-1502. |
| TNBC cell lines BT20 | 4.66 ± 0.32 µM(IC50) | 5 days | To evaluate the antiproliferative effects of afatinib on TNBC cell lines, BT20 showed an IC50 value of 4.66 ± 0.32 µM for afatinib. | Ther Adv Med Oncol. 2020 Jan 28;12:1758835919897546. |
| TNBC cell lines HDQP1 | 0.04 ± 0.01 µM(IC50) | 5 days | To evaluate the antiproliferative effects of afatinib on TNBC cell lines, HDQP1 showed an IC50 value of 0.04 ± 0.01 µM for afatinib. | Ther Adv Med Oncol. 2020 Jan 28;12:1758835919897546. |
| TNBC cell lines HCC1937 | 0.90 ± 0.28 µM(IC50) | 5 days | To evaluate the antiproliferative effects of afatinib on TNBC cell lines, HCC1937 showed an IC50 value of 0.90 ± 0.28 µM for afatinib. | Ther Adv Med Oncol. 2020 Jan 28;12:1758835919897546. |
| Administration | Dosage | Frequency | Description | References | ||
| Mice | ICC21 subcutaneous xenograft model | Oral gavage | 15 mg/kg | Daily for 21 days | To evaluate the in vivo efficacy of Afatinib in combination with FGFR inhibitors in FGFR2 fusion-positive ICC models. Results showed that combination treatment significantly induced tumor regression. | Cancer Discov. 2022 May 2;12(5):1378-1395. |
| NOD/SCID mice | ESCC PDX models | Oral gavage | 15 mg/kg | Once daily for 21 days | To evaluate the anti-tumor effects of Afatinib in ESCC PDX models. Results showed that Afatinib significantly inhibited tumor growth, with TGI ranging from 82.65% to 118.4%. | J Hematol Oncol. 2018 Aug 29;11(1):109. |
| Mice | Xenograft model | Oral | 20 mg/kg | Daily for 14 days | Evaluate the effect of combination therapy on melanoma xenograft model, results showed significant reduction in tumor growth rate. | Cell Death Dis. 2019 Sep 10;10(9):663. |
| SCID mice | H2073-SVD and H2073-ASV xenograft models | Oral gavage | 7.5 or 20 mg/kg | Once daily for 14 days | Evaluate the tumor growth inhibitory effect of afatinib on EGFR Ex20Ins mutant tumors, results showed afatinib at 7.5 mg/kg was ineffective in H2073-SVD and H2073-ASV models | Mol Cancer Ther. 2018 May;17(5):885-896. |
| Mice | WT C57BL/6J mice | Oral gavage | 25 mg/kg | For 2 weeks | To study the effects of ErbB signaling inhibition on VEGF-B–induced cardiac hypertrophy, results showed that afatinib inhibited VEGF-B–induced phosphorylation of Akt and Erk. | Circulation. 2019 May 28;139(22):2570-2584. |
| BALB/c-nu/nu female mice | Calu3-ARS xenograft model | Oral | 20 mg/kg | 6 days per week for 3 weeks | Evaluate the efficacy of combined afatinib and crizotinib treatment on afatinib-resistant tumors with MET amplification | Cancer Sci. 2018 May;109(5):1493-1502. |
| Nude mice | Non-small cell lung cancer patient-derived xenograft (PDX) models | Oral | 15 mg/kg | 5 days on, 2 days off for 4 cycles | To evaluate the efficacy of low-dose combination therapy in overcoming therapy resistance, results showed complete suppression of tumor growth in all PDX models | Commun Biol. 2022 Jan 17;5(1):59 |
| CB17/lcr-PrkdcSCID/Crl mice | HCC1806 xenograft model | Oral gavage | 10 mg/kg | 5 days on, 2 days off, for 21-23 days | To evaluate the antitumor efficacy of afatinib combined with dasatinib in the HCC1806 xenograft model, the combination treatment significantly delayed tumor growth. | Ther Adv Med Oncol. 2020 Jan 28;12:1758835919897546. |
| NSG mice | SUIT2 orthotopic model | Intraperitoneal | 5 mg/kg | Once daily for 10 days | Evaluate the antitumor efficacy of afatinib combined with MRTX1133, showing significant reduction in tumor volume | Cancer Res. 2023 Sep 15;83(18):3001-3012. |
| Dose | Rat: 4 mg/kg[3] (i.v.); 8 mg/kg[3] (p.o.) | ||||||||||||||||||||||||
| Administration | i.v., p.o. | ||||||||||||||||||||||||
| Pharmacokinetics |
|
| 计算器 | ||||
| 存储液制备 | ![]() |
1mg | 5mg | 10mg |
|
1 mM 5 mM 10 mM |
1.39mL 0.28mL 0.14mL |
6.96mL 1.39mL 0.70mL |
13.93mL 2.79mL 1.39mL |
|
| CAS号 | 850140-73-7 |
| 分子式 | C32H33ClFN5O11 |
| 分子量 | 718.08 |
| SMILES Code | O=C(NC1=CC2=C(NC3=CC=C(F)C(Cl)=C3)N=CN=C2C=C1O[C@@H]4COCC4)/C=C/CN(C)C.O=C(O)/C=C\C(O)=O.O=C(O)/C=C\C(O)=O |
| MDL No. | MFCD25974239 |
| 别名 | 马来酸阿法替尼 ;BIBW 2992MA2; Afatinib (maleate); BIBW 2992; BIBW2992 Dimaleate |
| 运输 | 蓝冰 |
| 存储条件 |
In solvent -20°C: 3-6个月 -80°C: 12个月 Pure form Sealed in dry,2-8°C |
| 溶解方案 |
DMSO: 35 mg/mL(48.74 mM),注意:DMSO长时间开封后,会吸水并导致溶解能力下降,请避免使用长期开封的DMSO H2O: 50 mg/mL(69.63 mM),配合低频超声助溶
|
沪公网安备 31011702889066号
沪ICP备2024050318号-1