

| 规格 | 价格 | 会员价 | 库存 | 数量 | |||
|---|---|---|---|---|---|---|---|
| {[ item.pr_size ]} {[ size_append(item.pr_size_append, item.pr_am, item.pr_size) ]} |
{[ getRatePriceInt(item.pr_rmb, 1,1) ]} {[ getRatePriceInt(item.pr_rmb_sale, 1,1) ]} {[ suihuo_tips(item.pr_tag_price, item.pr_am) ]} |
{[ getRatePriceInt(item.pr_rmb, 1,1) ]} {[ getRatePriceInt(item.pr_rmb,item.pr_rate,1) ]} {[ suihuo_tips(item.pr_tag_price, item.pr_am) ]} |
{[ getRatePriceInt(item.pr_rmb, 1,1) ]}{[ suihuo_tips(item.pr_tag_price, item.pr_am) ]} | {[ getRatePrice(item.pr_rmb_sale, 1,1,item.mem_isinteger) ]} {[ getRatePrice(item.pr_rmb,item.pr_rate,item.mem_rate,item.mem_isinteger) ]} {[ getRatePrice(item.pr_rmb,1,item.mem_rate,item.mem_isinteger) ]} | 现货 | 1周 咨询 | - + |
快速发货 顺丰冷链运输,1-2 天到达
品质保证
技术支持
免费溶解

| 产品名称 | OX1 receptor ↓ ↑ | OX2 receptor ↓ ↑ | 其他靶点 | 纯度 | |||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| SB-408124 |
++
OX1 (membrane), Ki: 27 nM OX1 (whole cell), Ki: 57 nM |
98% | |||||||||||||||||
| SB-334867 free base | ✔ | 99%+ | |||||||||||||||||
| Almorexant HCl |
+++
OX1 receptor, IC50: 6.6 nM |
++++
OX2 receptor, IC50: 3.4 nM |
99%+ | ||||||||||||||||
| 1. 鼠标悬停在“+”上可以显示相关IC50的具体数值。"+"越多,抑制作用越强。2. "✔"表示该化合物对相应的亚型有抑制作用,但抑制强度暂时没有相关数据。 | |||||||||||||||||||
| 描述 | EMPA is a high-affinity, reversible, and selective OX2 receptor antagonist. [3H]EMPA binds to human and rat OX2-HEK293 membranes with Kd values of 1.1 and 1.4 nM, respectively. EMPA competitively antagonizes orexin-A and orexin-B-induced [3H]inositol phosphate (IP) accumulation at hOX2 receptors with pA2 values of 8.6 and 8.8, respectively. EMPA displaces [3H]EMPA binding on cell membranes containing human and rat OX2 receptors with Ki values of 1.10±0.24 nM and 1.45±0.13 nM, respectively. In human and mouse V1a receptor binding assays, EMPA has IC50=5.75 µM, Ki=2.63 µM, IC50=12.8 µM, Ki=5.8 µM. In CHO (dHFr-) cells stably expressing hOX2 receptor, EMPA can inhibit the [Ca2+]i response induced by orexin-A or orexin-B, with IC50 values of 8.8±1.7 nM and 7.9±1.7 nM, respectively[1]. |
| Concentration | Treated Time | Description | References | |
| Human coronary artery endothelial cells (HCAECs) | 1 μM | 24 h | EMPA ameliorates stretch induced oxidative stress and cell permeability via inhibiting PKC activity. | Redox Biol. 2024 Feb;69:102979 |
| BV2 microglia | 50 μM | 24 hours | To evaluate the anti-inflammatory effects of EMPA on LPS-induced cell inflammation and NLRP3 inflammasome activation. Results showed that EMPA significantly suppressed the upregulation of pro-inflammatory cytokines (IL-1β, IL-6, TNF-α) mRNA levels and inhibited the expression of NLRP3 inflammasome-related proteins. | J Neuroinflammation. 2023 Dec 12;20(1):296 |
| Human coronary artery endothelial cells (HCAECs) | 1 μM | 24 hours | EMPA reduces NOX activation and ROS generation induced by 10% stretch via inhibition of PKC activity | Redox Biol. 2024 Feb;69:102979 |
| H9C2 cardiomyocytes | 0.04-5 μM | 2 or 24 hours | To evaluate the effect of EMPA on intracellular Na+ and Ca2+ concentrations, results showed that EMPA effectively suppressed the increase in intracellular Na+ and Ca2+ concentrations under high glucose conditions | Exp Mol Med. 2023 Jun;55(6):1174-1181 |
| HL-1 cells | 10, 50, 500 nM | 24 hours | To evaluate the cytotoxic or cytoprotective effects of EMPA on cardiomyocytes. Co-incubation with EMPA increased cell viability, reduced intracellular Ca2+ content and oxidative stress. | Cardiovasc Diabetol. 2021 Jul 23;20(1):150 |
| H9C2 cells | 1 µM | 72 hours | To investigate the effect of EMPA on IFN-γ-induced cell senescence, results showed that EMPA significantly inhibited IFN-γ-induced oxidative stress and senescence, and promoted cell proliferation. | Cardiovasc Diabetol. 2024 Jul 23;23(1):269 |
| Porcine coronary artery endothelial cells | 100 nM | 24 hours | To evaluate the protective effect of EMPA on Ang II-induced endothelial senescence and dysfunction, results showed that EMPA inhibited Ang II-induced oxidative stress, increased senescence markers, and endothelial dysfunction. | Cardiovasc Diabetol. 2021 Mar 16;20(1):65 |
| human ventricular cardiac myoblasts AC16 | 0.5 µM | 7 days | To evaluate the effects of EMPA on high glucose-induced DNA methylation changes in the promoter regions of NF-κB and SOD2. Results showed that EMPA prevented HG-induced DNA demethylation by reducing TET2 binding to the promoter regions and restored normal gene expression levels. | Cardiovasc Diabetol. 2023 Feb 2;22(1):24 |
| Administration | Dosage | Frequency | Description | References | ||
| Mice | Diabetic and non-diabetic myocardial infarction models | Oral | 30 mg/kg/day | 1 week or 24 hours pretreatment | EMPA significantly reduced infarct size and myocardial fibrosis, improving cardiac function and survival rate. | Protein Cell. 2022 May;13(5):336-359 |
| C57BL/6J male mice | Retinal ischemia and reperfusion (IR) injury model | Intravitreal injection | 100 µg/ml | Single injection, observed for 7 days | To evaluate the therapeutic efficacy of EMPA in retinal IR injury. Results showed that EMPA significantly protected retinal ganglion cells (RGCs) from IR injury, attenuated local retinal inflammation, and restored the expression of mitochondrial dynamics-related genes Mfn1 and Opa1. | J Neuroinflammation. 2023 Dec 12;20(1):296 |
| Rat | Langendorff perfused heart model | Perfusion | 10 µM | 10 min pretreatment followed by continuous perfusion | To investigate the effects of EMPA on cardiac function and metabolism during ischemia/reperfusion. Results showed that EMPA improved left ventricular-developed pressure, increased ATP and phosphocreatine levels, and enhanced Gibbs free energy for ATP hydrolysis. Additionally, EMPA shifted cardiac metabolism from glucose oxidation to increased ketone utilization. | Cardiovasc Res. 2023 Dec 19;119(16):2672-2680 |
| Zebrafish | DM-HFrEF model | Immersion | 0.2-5 μM | From 5 dpf, lasting more than 24 hours | To evaluate the effects of EMPA on survival, locomotion, and cardiac function in zebrafish, results showed that EMPA significantly improved survival, locomotion, and cardiac function | Exp Mol Med. 2023 Jun;55(6):1174-1181 |
| C57Bl/6 mice | Non-diabetic mice | Oral gavage | 10 mg/kg/day | Once daily for 10 days | To evaluate the protective effects of EMPA against DOXO-induced cardiotoxicity. EMPA improved cardiac function, reduced cardiac fibrosis and expression of inflammatory markers. | Cardiovasc Diabetol. 2021 Jul 23;20(1):150 |
| C57BL/6J mice | HFpEF model | Oral gavage | 10 mg/kg/day | Once daily for 28 days | To investigate the protective effect of EMPA on cardiac function in HFpEF mice, results showed that EMPA improved diastolic dysfunction, alleviated cardiac hypertrophy and fibrosis, and inhibited cardiac inflammation and aging processes. | Cardiovasc Diabetol. 2024 Jul 23;23(1):269 |
| Rats | Aortic arch and thoracic aorta segments | In vitro incubation | 100 nM | 15 hours | To evaluate the inhibitory effect of EMPA on the upregulation of SGLT1 and SGLT2 protein expression in Ang II- and eNOS inhibitor-treated thoracic aorta segments, results showed that EMPA reduced oxidative stress and improved endothelial function. | Cardiovasc Diabetol. 2021 Mar 16;20(1):65 |
| Animal study | Intraperitoneally injected at doses of 1-300 mg/kg, EMPA reversed [Ala11,D-Leu15]orexin-B-induced hypermobility in male NMRI mice in a dose-dependent manner, without significantly affecting the locomotor activity of the mice[1].Administered intraperitoneally at doses of 3-30 mg/kg, EMPA reduces baseline LMA in Wistar rats in a dose-dependent manner[1]. |
| 计算器 | ||||
| 存储液制备 | ![]() |
1mg | 5mg | 10mg |
|
1 mM 5 mM 10 mM |
2.20mL 0.44mL 0.22mL |
11.00mL 2.20mL 1.10mL |
22.00mL 4.40mL 2.20mL |
|
| CAS号 | 680590-49-2 |
| 分子式 | C23H26N4O4S |
| 分子量 | 454.54 |
| SMILES Code | N(C1=CN=C(C=C1)OC)(CC(=O)N(CC)CC1=CN=CC=C1)S(C1C=CC=CC=1C)(=O)=O |
| MDL No. | N/A |
| 别名 | |
| 运输 | 蓝冰 |
| 存储条件 |
In solvent -20°C: 3-6个月 -80°C: 12个月 Pure form Sealed in dry, store in freezer, under -20°C |
| 溶解方案 |
DMSO: 50 mg/mL(110 mM),配合低频超声助溶,注意:DMSO长时间开封后,会吸水并导致溶解能力下降,请避免使用长期开封的DMSO 以下溶解方案都请先按照体外实验的方式配制澄清的储备液,再依次添加助溶剂: ——为保证实验结果的可靠性,澄清的储备液可以根据储存条件,适当保存;体内实验的工作液,建议现用现配,当天使用; 以下溶剂前显示的百分比是指该溶剂在终溶液中的体积占比;如在配制过程中出现沉淀、析出现象,可以通过加热和/或超声的方式助溶
|
沪公网安备 31011702889066号
沪ICP备2024050318号-1